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Preface

The need for ever faster computers has not ceased since the beginning of the computer
era. Every new application seems to push existing computers to their limit. So far,
computer manufacturers have kept up with the demand admirably well. In 1948, the
electronic components used to build computers could switch from one state to
another about 10,000 times every second. The switching time of this year's compo-
nents is approximately 1/10,000,000,000th of a second. These figures mean that the
number of operationsa computer can do in one second has doubled, roughly every
two years, over the past forty years. Thisisvery impressive, but how long can it last?It
isgenerdly believed that the trend will remain until the end of this century. It may
even be possible to maintain it a little longer by using optically based or even
biologically based components. What happens after that?

If the current and contemplated applications of computers are any indication,
our regquirementsin terms of computing speed will continue, at least at the same rate
asin the past, well beyond the year 2000. Already, computers faster than any available
today are needed to perform the enormous number of calculations involved in
developing cures to mysterious diseases. They are essential to applications where the
human ahility to recognize complex visual and auditory patternsisto be simulated in
real time. And they are indispensableif we are to realize many of humanity's dreams,
ranging from reliable long-term weather forecasting to interplanetary travel and outer
space exploration. It appears now that parallel processing is the way to achieve these
desired computing speeds.

The overwhelming majority of computersin existence today, from the simplest
to the most powerful, are conceptually very similar to one another. Their architecture
and mode of operation follow, more or less, the same basic design principles
formulated in the late 1940s and attributed to John von Neumann. The ingenious
scenario is very simple and essentially goes as follows: A control unit fetches an
instruction and its operands from a memory unit and sends them to a processing unit;
there the instruction isexecuted and the result sent back to memory. This sequence of
eventsis repeated for each instruction. Thereis only one unit of each kind, and only
one instruction can be executed at a time.
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With parallel processing the situation isentirely different. A parallel computer is
one that consists of a collection of processing units, or processors, that cooperate to
solve a problem by working simultaneously on different parts of that problem. The
number of processors used can range from a few tens to severa millions. As a resuilt,
the time required to solve the problem by a traditional uniprocessor computer is
significantly reduced. This approach is attractive for a number of reasons. First, for
many computational problems, the natural solution isa parallel one. Second, the cost
and size of computer components have declined so sharply in recent years that
parallel computers with a large number of processors have become feasible. And,
third, it is possiblein parallel processing to select the parallel architecture that is best
suited to solve the problem or class of problems under consideration. Indeed,
architects of parallel computers have the freedom to decide how many processors are
to be used, how powerful these should be, what interconnection network links them to
one another, whether they share a common memory, to what extent their operations
are to be carried out synchronously, and a host of other issues. This wide range o
choices has been reflected by the many theoretical models of parallel computation
proposed as wdl as by the severa parallel computers that were actually built.

Parallelism is sure to change the way we think about and use computers. It
promises to put within our reach solutions to problems and frontiers of knowledge
never dreamed of before. Therich variety of architectures will lead to the discovery of
novel and more efficient solutions to both old and new problems. It is important
therefore to ask: How do we solve problems on a paralel computer? The primary
ingredient in solving a computational problem on any computer is the solution
method, or algorithm. Thisbook isabout algorithms for parallel computers. It describes
how to go about designing algorithms that exploit both the parallelisminherent in the
problem and that available on the computer. It aso shows how to analyze these
algorithms in order to evaluate their speed and cost.

The computational problemsstudied in this book are grouped into three classes:
(1) sorting, searching, and related problems; (2) combinatorial and numerical
problems; and (3) problems arising in a number of application areas.These problems
were chosen due to their fundamental nature. It isshown how a parallel agorithm is
designed and analyzed to solve each problem. In some cases, severa algorithms are
presented that perform the same job, each on a different model o parallel com-
putation. Examples are used as often as possible to illustrate the algorithms. Where
necessary, a sequential algorithm is outlined for the problem at hand. Additiona
algorithms are briefly described in the Problems and Bibliographical Remarks
sections. A list of references to other publications, where related problems and
algorithms are treated, is provided at the end of each chapter.

The book may serveasatext for agraduate course on parallel algorithms. It was
used at Queen's University for that purpose during thefall term of 1987. The class met
for four hours every week over a period of twelve weeks. One of the four hours was
devoted to student presentations of additional material, referenceto which wasfound
in the Bibliographical Remarks sections. The book should also be useful to computer
scientists, engineers, and mathematicians who would like to learn about parallel
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models of computation and the design and analysis of paralel algorithms. It is
assumed that the reader possesses the background normally provided by an
undergraduate introductory course on the design and analysis of algorithms.

The most pleasant part of writing a book is when one finally gets a chance to
thank those who helped make the task an enjoyable one. Four people deserve special
credit: Ms. Irene LaFleche prepared the electronic version of the manuscript with her
natural cheerfulness and unmistakable talent. The diagrams are the result of Mr.
Mark Attisha's expertise, enthusiasm, and skill. Dr. Bruce Chalmers offered numerous
trenchant and insightful comments on an early draft. Adviceand assistance on matters
big and small were provided generously by Mr. Thomas Bradshaw. | also wish to
acknowledge the several helpful suggestions made by the studentsin my CISC-867
class at Queen's. The support provided by the staff of Prentice Hall at every stage is
greatly appreciated

Finally, I amindebted to my wife, Karolina, and to my two children, Sophiaand
Theo, who participated in this project in more ways than | can mention. Theo, in
particular, spent thefirst year o hislifeexamining, from a vantage point, each word as
it appeared on my writing pad.

Selim G. Akl
Kingston, Ontario



Introduction

1.1 THE NEED FOR PARALLEL COMPUTERS

A battery of satellites in outer space are collecting data at the rate of 101° bits per
second. The data represent information on the earth's weather, pollution, agriculture,
and natural resources. In order for thisinformation to be used in a timely fashion, it
needs to be processed at a speed of at least 10'* operations per second.

Back on earth, a team of surgeons wish to view on a specia display a
reconstructed three-dimensional image of a patient's body in preparation for surgery.
They need to be able to rotate the image at will, obtain a cross-sectional view of an
organ, observeitin living detail, and then perform a simulated surgery whilewatching
its effect, all without touching the patient. A minimum processing speed of 1013
operations per second would make this approach worthwhile.

The preceding two examples are representative of applications where trem-
endously fast computers are needed to process vast amounts of data or to perform a
large number of calculations quickly (or at least within a reasonable length of time).
Other such applications include aircraft testing, the development of new drugs, oil
exploration, modeling fusion reactors, economic planning, cryptanalysis, managing
large databases, astronomy, biomedical analysis, real-time speech recognition, robo-
tics, and the solution of large systems of partial differential equations arising from
numerical simulations in disciplines as diverse as seismology, aerodynamics, and
atomic, nuclear, and plasma physics. No computer exists today that can deliver the
processing speeds required by these applications. Even the so-called supercomputers
peak at a few billion operations per second.

Over the past forty years dramatic increases in computing speed were achieved.
Most of these werelargely due to the use of inherently faster el ectronic components by
computer manufacturers. As we went from relays to vacuum tubes to transistors and
from small to medium to large and then to very large scaleintegration, we witnessed—
often in amazement— the growth in size and range of the computational problems
that we could solve.

Unfortunately, it isevident that thistrend will soon cometo an end. Thelimiting
factor isasimple law o physics that gives the speed of light in vacuum. This speed is
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approximately equal to 3 x 10® meters per second. Now, assume that an electronic
device can perform 10!? operations per second. Then it takes longer for a signal to
travel between two such devicesone-half of a millimeter apart than it takesfor either
of them to process it. In other words, al the gains in speed obtained by building
superfast electronic components are lost while one component is waiting to receive
some input from another one. Why then (one is compelled to ask) not put the two
communicating components even closer together? Again, physics tells us that the
reduction of distance between electronic devices reaches a point beyond which they
begin to interact, thus reducing not only their speed but also their reliability.

It appears that the only way around this problem isto use parallelism. The idea
hereisthat if several operationsare performed simultaneously, then the time taken by
acomputation can besignificantly reduced. Thisisafairly intuitive notion, and one to
which we are accustomed in any organized society. We know that severa people o
comparable skills can usualy finish a job in a fraction of the time taken by one
individual. From mail distribution to harvesting and from office to factory work, our
everyday life offers numerous examples of parallelism through task sharing.

Evenin thefield of computing, theidea of parallelismisnot entirely new and has
taken many forms. Sincethe early days of information processing, peoplerealized that
it is greatly advantageous to have the various components of a computer do different
things at the same time. Typicaly, while the central processing unit is doing
calculations, input can be read from a magnetic tape and output produced on a line
printer. In more advanced machines, there are several simple processors each
specidizing in a given computational task, such as operations on floating-point
numbers, for example. Some of today's most powerful computers contain two or more
processing units that share among themselves the jobs submitted for processing.

In each of the examples just mentioned, parallelism is exploited profitably, but
nowhere near its promised power. Strictly speaking, none of the machines discussed is
truly a paralel computer. In the modern paradigm that we are about to describe,
however, the idea of parallel computing can realize its full potential. Here, our
computational tool is a parallel computer, that is, a computer with many processing
units, or processors. Given a problem to be solved, it is broken into a number of
subproblems. All of these subproblems are now solved simultaneously, each on a
different processor. The results are then combined to produce an answer to the
original problem. Thisisaradica departure from the model of computation adopted
for the past forty yearsin building computers— namely, the sequential uniprocessor
machine.

Only during the last ten years has parallelism become truly attractive and a
viable approach to the attainment of very high computational speeds. The declining
cost of computer hardware has made it possible to assemble paralel machines with
millions of processors. Inspired by the challenge, computer scientists began to study
parallel computers both in theory and in practice. Empirical evidence provided by
homegrown prototypes often came to support alarge body of theoretical studies. And
very recently, a number of commercial parallel computers have made their ap-
pearance on the market.
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With the availability of the hardware, the most pressing question in parallel
computing today is. How to program parallel computers to solve problems efficiently
and in a practical and economically feasible way? As is the case in the sequentia
world, parallel computing requires algorithms, programming languages and com-
pilers, as well as operating systemsin order to actually perform a computation on the
paralel hardware. All theseingredients of parallel computing arecurrently receivinga
good deal of well-deserved attention from researchers.

This book is about one (and perhaps the most fundamental) aspect o
parallelism, namely, parallel algorithms. A parallel algorithm is a solution method for
agiven problem destined to be performed on a parallel computer. In order to properly
design such algorithms, one needs to have a clear understanding of the model of
computation underlying the parallel computer.

1.2 MODELS OF COMPUTATION

Any computer, whether sequential or parallel, operates by executing instructions on
data. A stream of instructions (the algorithm) tells the computer what to do at each
step. A stream of data (the input to the algorithm) is affected by these instructions.
Depending on whether there is one or severa of these streams, we can distinguish
among four classes of computers:

1 Single Instruction stream, Single Data stream (SISD)

2 Multiple Instruction stream, Single Data stream (MI1SD)

3 Single Instruction stream, Multiple Data stream (SIMD)

4. Multiple Instruction stream, Multiple Data stream (MIMD).

We now examine each of these classesin somedetail. In the discussion that followswe
shall not be concerned with input, output, or peripheral units that are available on
every computer.

1.2.1 SISD Computers

A computer in thisclassconsists of asingle processing unit receiving asingle stream of
instructions that operate on a single stream of data, asshownin Fig. 1.1. At each step
during the computation the control unit emits one instruction that operates on a
datum obtained from the memory unit. Such an instruction may tell the processor, for

CONTROL INSTRUCTION .| PROCESSOR DATA MEMORY
STREAM STREAM

Figure 11 SISD computer.
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example, to perform some arithmetic or logic operation on the datum and then put it
back in memory.

The overwhelming majority of computers today adhere to this model invented
by John von Neumann and his collaborators in the late 1940s. An algorithm for a
computer in this class is said to be sequential (or serial).

Example 1.1

In order to compute the sum o n numbers, the processor neads to gain access to the
memory n consecutive times and each time receive one number. Thereare dson — 1
additionsinvolved that are executed in sequence. Therefore, this computation requires on
the order d n operationsin total. [J

This example shows that algorithms for SISD computers do not contain any
parallelism. The reason is obvious, there is only one processor! In order to obtain
from a computer the kind of parallel operation defined earlier, it will need to have
several processors. Thisis provided by the next three classes of computers, the classes
of interest in this book. In each of these classes, a computer possesses N processors,
where N > 1

1.2.2 MISD Computers

Here, N processors each with its own control unit share a common memory unit
where data reside, as shown in Fig. 1.2. Thereare N streams of instructions and one
stream of data. At each step, one datum received from memory is operated upon by all
the processors simultaneously, each according to the instruction it receivesfrom its
control. Thus, parallelism is achieved by letting the processors do different things at
the same time on the same datum. This class of computers lends itself naturaly to
those computations requiring an input to be subjected to severa operations, each
receiving the input in its origina form. Two such computations are now illustrated.

PROCESSOR INSTRUCTION CONTROL
1 STREAM 1 1
PROCESSOR INSTRUCTION CONTROL
2 STREAM 2 2
MEMORY DATA
STREAM
° [
PROCESSOR INSTRUCTION CONTROL
N STREAM N N

Figure1.2 MISD computer.
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Example 1.2

It is required to determine whether a given positiveinteger z has no divisorsexcept 1 and
itsdf. The obvious solution to this problem isto try al possibledivisorsof z: If none of
these succeedsin dividing z, then z issaid to be prime; otherwisez issaid to be composite.

We can implement this solution as a parallel algorithm on an MISD computer.
Theideais to split the job of testing potential divisorsamong processors. Assume that
there are as many processorson the parallel computer as there are potential divisorsof z
All processors take z as input, then each tries to divide it by its associated potential
divisor and issues an appropriate output based on the result. Thus it is possible to
determinein one step whether z is prime. More redlistically,if there are fewer processors
than potential divisors, then each processor can be given the job o testing a different
subset o these divisors. In either case, a substantial speedup is obtained over a purely
sequential implementation.

Although more efficient solutions to the problem of primality testing exist, we have
chosen thesimple one asit illustrates the point without the need for much mathematical
sophistication. []

Example 1.3

In many applications, we often need to determine to which of a number of classesdoesa
given object belong. The object may be a mathematical one, where it is required to
associate a number with one of several sets, each with its own properties. Or it may bea
physical one: A robot scanning the deep-sea bed "sees” different objects that it has to
recognize in order to distinguish among fish, rocks, algae, and so on. Typically,
membership of the object is determined by subjecting it to a number of different tests.

The classificationprocesscan be done very quickly on an MISD computer with as
many processors as there are classes. Each processor is associated with a class and can
recognize members of that class through a computational test. Given an object to be
classified, it is sent simultaneously to all processors where it is tested in parallel. The
object belongs to the class associated with that processor that reports the success of its
test. (Of course, it may be that the object does not belongto any of the classes tested for,
in which caseall processorsreport failure.) Asin example 1.2, when fewer processorsthan
classes are available, several tests are performed by each processor; here, however, in
reporting success, a processor must also provide the class to which the object
belongs. O

The preceding examples show that the class of MISD computers could be
extremely useful in many applications. It is also apparent that the kind of com-
putations that can be carried out efficiently on these computers are of a rather
specialized nature. For most applications, MISD computers would be rather
awkward to use. Parallel computers that are more flexible, and hence suitable for a
wide range of problems, are described in the next two sections.

1.2.3 SIMD Computers
In this class, a parallel computer consists of N identical processors, as shownin Fig.

13
Each of the N processors possessesitsown local memory whereit can storeboth
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SHARED MEMORY
OR
INTERCONNECTION NETWORK

DATA DATA DATA
STREAM STREA% STREAM
1
PROCESSOR PROCESSOR PROCESSOR
1 2 e o o N
INSTRUCTION
STREAM
CONTROL

Figure 1.3 SIMD computer.

programs and data. All processors operate under the control of a single instruction
stream issued by a central control unit. Equivalently, the N processors may be
assumed to hold identical copies of a single program, each processor's copy being
stored in its local memory. There are N data streams, one per processor.

The processors operate synchronously: At each step, al processors execute the
same instruction, each on a different datum. The instruction could be a simple one
(such as adding or comparing two numbers) or a complex one (such as merging two
lists of numbers). Similarly, the datum may besimple (one number) or complex (severa
numbers). Sometimes, it may be necessary to have only a subset of the processors
execute an instruction. This information can be encoded in the instruction itself,
thereby telling a processor whether it should be active (and execute theinstruction) or
inactive (and wait for the next instruction). There is a mechanism, such as a global
clock, that ensures lock-step operation. Thus processors that are inactive during an
instruction or those that complete execution of the instruction before others may stay
idle until the next instruction isissued. The time interval between two instructions
may be fixed or may depend on the instruction being executed.

In most interesting problems that we wish to solve on an SIM D computer, it is
desirable for the processors to be able to communicate among themselves during the
computation in order to exchange data or intermediate results. This can be achieved
in two ways, giving rise to two subclasses: SIM D computers where communication is
through a shared memory and those where it is done via an interconnection network.
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1.2.3.1 Shared-Memory (SM) SIMD Computers. Thisclassis aso
known in the literature as the Parallel Random-Access Machine (PRAM) modd.
Here, the N processors share a common memory that they use in the same way a
group of people may usea bulletin board. When two processorswish to communicate,
they do so through the shared memory. Say processor i wishesto pass a number to
processor j. This is done in two steps. First, processor i writes the number in the
shared memory at a given location known to processor j. Then, processor j readsthe
number from that location.

During the execution of aparallel algorithm, the N processorsgain accessto the
shared memory for readinginput data, for reading or writingintermediate results, and
for writing final results. The basic model alows al processorsto gain access to the
shared memory simultaneously if the memory locations they are trying to read from
or writeinto are different. However, the classof shared-memory SIM D computers can
befurther divided into four subclasses, according to whether two or more processors
can gain access to the same memory location simultaneously:

(i) Exclusve-Read, Exclusve-Write(EREW) SM SIMD Computers.  Access
to memory locations is exclusve. In other words, no two processors are allowed
simultaneously to read from or write into the same memory location.

(ii) Concurrent-Read, Exclusve-Write (CREW) SM SIMD Computers.
Multiple processorsare allowed to read from the same memory location but the right
to write is gtill exclusve: No two processors are alowed to write into the same
location simultaneously.

(iii) Exclusve-Read, Concurrent-Write (ERCW) SM SIMD Computers.
Multiple processors are allowed to write into the same memory location but read
accesses remain exclusive.

(iv) Concurrent-Read, Concurrent-Write (CRCW) SM SIMD Computers.
Both multiple-read and multiple-write privilegesare granted.

Allowing multiple-read accesses to the same address in memory should in
principle pose no problems (except perhaps some technological ones to be discussed
later). Conceptually, each of the several processorsreading from that location makesa
copy of the location's contents and stores it in its own local memory.

With multiple-writeaccesses, however, difficultiesarise. If severa processorsare
attempting simultaneously to store (potentially different) data at a given address,
which o them should succeed? In other words, there should be a deterministicway o
specifying the contents of that address after the write operation. Several policieshave
been proposed to resolve such write conflicts, thusfurther subdividing classes (iii) and
(iv). Some o these policies are

(a) the smallest-numbered processor is allowed to write, and accessis denied to all
other processors;

(b) al processors are allowed to write provided that the quantities they are
attempting to store are equal, otherwise access is denied to al processors; and

(c) the sum of al quantities that the processorsare attempting to write is stored.
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A typical representative of the class of problems that can be solved on parallel
computers of the SM SIMD family is given in the following example.

Example 1.4

Consider a very large computer file consisting of » distinct entries. We shall assume for
simplicity that thefileis not sorted in any order. (In fact, it may be the case that keeping
the file sorted at all times is impossible or simply inefficient.) Now suppose that it is
required to determine whether a given item x is present in thefilein order to perform a
standard database operation, such as read, update, or delete. On a conventional (i.e.,
SISD) computer, retrieving x requires n steps in the worst case where each step is a
comparison between x and a file entry. The worst case clearly occurs when x is either
equal to thelast entry or not equal to any entry. On the average, of course, weexpect to
do alittle better: If thefileentries are distributed uniformly over a given range, then half
as many steps are required to retrieve x.

The job can be done a lot faster on an EREW SM SIMD computer with N
processors, where N < n Let usdenote the processorsby P,, P,,...,P. Tobegin with,
we need to let al the processors know the value of x. Thiscan be done using an operation
known as broadcasting:

1. P, reads x and communicates it to P,.

2. Simultaneously, P, and P, communicate X to P; and P,, respectively.

3. Simultaneously, P,, P,, P;, and P, communicate X to Ps, P¢, P,, and P,

respectively,

and so on.
The process continues until all processors obtain x. As the number of processors that
receive x doubles at each stage, broadcasting x to all N processors requires log N steps.>
A formal statement of the broadcasting process is given in section 2.5.1.

Now the file to be searched for x is subdivided into subfiles that are searched
simultaneously by the processors: P, searches the first n/N elements, P, searches the
second n/N elements, and so on. Since all subfiles are of the same size, n/N steps are
needed in the worst case to answer the query about x. In total, therefore, this parallel
algorithm requireslog N + »/N stepsin the worst case. On the average, we can do better
than that (aswas done with the SISD computer): A location F holding a Boolean value
can be set aside in the shared memory to signal that one of the processors hasfound the
item searched for and, consequently, that all other processors should terminate their
search. Initialy, Fisset to false. When a processor finds x in its subfile, it sets F to true.
At every step of the search al processorscheck Ftoseeiif it istrueand stop if thisis the
case. Unfortunately, this modification of the algorithm does not comefor free: log N steps
are needed to broadcast the value of F each time the processors need it. Thisleads to a
total of log N + (n/N)log N stepsin the worst case. It is possible to improve this behavior
by having the processorseither check the value of F at every (log N)th step, or broadcast
it (once true) concurrently with the search process.

'Note that the indexing schemesused for processorsin this chapter are for illustration only. Thus,
for example, in subsequent chapters a set of N processors may be numbered [ to N, or ¢ to N — 1,
whichever is more convenient.

2All logarithms in this book are to the base 2, unless otherwise indicated. If N is not a power of 2,
then log N is always rounded to the next higher integer. Similarly, and unless otherwise stated, we shall
assume that al red quantities—such as those arising from computing square roots and ratios—are
rounded appropriately.
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In order to truly exploit this early terminationtrick without increasing the worst-
case running time, we need to use a more powerful modd, namely,a CREW SM SIMD
computer. Since concurrent-read operations are dlowed, it takes one step for Al
processors to obtain x initialy and one step for them to read F each time it is needed.
Thisleads to a worst case d n/N Steps.

Finaly we note that an even more powerful modd is needed if we remove the
assumption made at the outset o this example that dl entriesin the file are distinct.
Typicdly, the file may represent a textua database with hundreds d thousands o
articles, each containingsevera thousand words; It may be necessary to search such afile
for agiven word x. In this case, more than one entry may beequa to x, and hence more
than one processor may need to report success at the same time. This means that two or
more processorswill attempt to writeinto location Fsmultaneoudy, asituation that can
only be handled by a CRCW SM SIMD computer. [

Simulating Multiple Accesses on an EREW Computer. The EREW
SM SIMD model of a parallel computer is unquestionably the weakest of the four
subclasses of the shared-memory approach, asit restrictsits access to a given address
to one processor at a time. An algorithm for such a computer must be specifically
designed to exclude any attempt by more than one processor to read from or write
into the same location simultaneously. The model is sufficiently flexible, however, to
alow the simulation of multiple accesses at the cost of either increasing the space
and/or the time requirements o an algorithm.

Such a simulation may be desirable for one of two reasons:

1 The parallel computer available belongs to the EREW class and thus the only
way to execute a CREW, ERCW, or CRCW algorithm is through simulation or
2 parallel computers of the CREW, ERCW, and CRCW models with a very large
number of processors are technologically impossible to build at all. Indeed, the
number of processors that can be simultaneously connected to a memory
location is limited
(i) not only by the physical size of the device used for that location,
(ii) but also by the device's physical properties (such as voltage).

Therefore concurrent accessto memory by an arbitrary number of processors may not
berealizablein practice. Again in thiscasesimulationisthe only resort to implement
an algorithm developed in theory to include multiple accesses.

(i) N Multiple Accesses. Suppose that we want to run a parallel algorithm
involving multiple accesses on an EREW SM SIMD computer with N processors
P, P, ..., Py. Supposefurther that every multiple accessmeansthat all N processors
are attempting to read from or write into the same memory location A. We can
simulate multiple-read operations on an EREW computer using a broadcast pro-
cedure as explained in example 1.4. Thisway, A can bedistributed to al processorsin
log N steps. Similarly, a procedure symmetrical to broadcasting can be used to handle
multiple-write operations. Assume that the N processors are alowed to writein A
simultaneously only if they are al attempting to store the same value. Let the value
that P, isattempting to write be denoted by a,, 1 < i < N. The procedureto storein A
works as follows:
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1 Forl<i< N/2,if a;and g, y,, areequal, then P; setsasecondary variable b; to
true; otherwise b; is set to false.

2 Forl<i< N/4if band b;, y,4 are both trueand a; = a;, y/4, then P; setsb; to
true; otherwise b; is set to false.

And so on. After log N steps, P, knows whether al the q; are equal. If they are, it
proceeds to store a, in A; otherwise no writing is allowed to take place. This store
procedure is the subject of problem 2.13.

The preceding discussion indicates that multiple-read and multiple-write
operations by all processors can be simulated on the EREW model. If every step of an
algorithm involves multiple accesses of this sort, then in the worst case such a
simulation increases the number of steps the algorithm requires by a factor of log N.

(i) mout of N Multiple Accesses. We now turn to the more general case
where a multiple read from or a multiple write into a memory location does not
necessarily implicate al processors. In a typical agorithm, arbitrary subsets of
processors may be each attempting to gain accessto different locations, one location
per subset. Clearly the procedures for broadcasting and storing described in (i) no
longer work in this case. Another approach is needed in order to simulate such an
algorithm on the EREW model with N processors. Say that the algorithm requires a
total of M locations of shared memory. Theidea hereisto associate with each of the
M locations another 2N — 2 locations. Each of the M locations is thought of as the
root of a binary tree with N leaves (the tree has depth log N and a total o 2N — 1
nodes). The leaves of each tree are numbered 1 through N and each is associated with
the processor with the same number.

When m processors, m < N, need to gain accessto location A, they can put their
requests at the leaves of thetreerooted at A. For a multiple read from location A, the
requests trickle (along with the processors) up the tree until one processor reachesthe
root and readsfrom A.The value of A isthen sent down the tree to all the processors
that need it. Similarly, for a multiple-write operation, the processors "carry" the
requests up the tree in the manner described in (i)for the store procedure. After log N
steps one processor reaches the root and makes a decision about writing. Going up
and down the tree of memory locations requires 2log N steps. The formal description
of these simulations, known as multiple broadcasting and multiple storing, respectively,
is the subject of section 3.4 and problem 3.33.

Therefore, the price paid for running a parallel algorithm with arbitrary multiple
accesses is a (2N — 2)-fold increase in memory requirements. Furthermore, the
number of steps is augmented by a factor on the order of log N in the worst case.

Feasibility of the Shared-Memory Model. The SM SIMD computer
is a fairly powerful model of computation, even in its weakest manifestation, the
EREW subclass. Indeed, the model alows all available processors to gain access to
the shared memory simultaneoudly. It is sometimes said that the model is unreadlistic
and no parallel computer based on that model can be built. The argument goes as
follows. When one processor needs to gain access to a datum in memory, some
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circuitry is needed to create a path from that processor to the location in memory
holding that datum. The cost o such circuitry is usually expressed as the number o
logical gatesrequired to decode the address provided by the processor. If the memory
consistsof M loceations, then the cost d the decoding circuitry may be expressed as
f (M) for somecost function f. If N processorsshare that memory asin the SM SIMD
model, then the cost of the decodingcircuitry climbsto N x f (M).For largeN and M
this may lead to prohibitively large and expensive decoding circuitry between the
processors and the memory.

There are many waysto mitigatethisdifficulty. All approachesinevitably lead to
models weaker than the SM SIM D computer. Of course, any algorithm for the latter
may be simulated on aweaker model at the cost of more space and/or computational
steps. By contrast, any algorithm for a weaker model runs on the SM SIMD machine
at no additional cost.

One way to reduce the cost of the decoding circuitry is to divide the shared
memory into R blocks, say, of M/R locations each. There are N + R two-way lines
that alow any processor to gain accessto any memory block at any time. However, no
more than one processor can read from or write into a block simultaneously. This
arrangement isshownin Fig. 1.4for N = 5and R = 3. Thecirclesat theintersections
of horizontal and vertical lines represent small (relatively inexpensive) switches. When

PROC?SSOR Py Py ®
PROCESSOR Py P Py
PROCESSOR o o ¢
PROCESSOR Fy & @
PROCESSOR I
MEMORY MEMORY MEMORY
BLOCK 1 BLOCK 2 BLOCK 3

Figure14 Dividing a shared memory into blocks.
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the ith processor wishes to gain access to the jth memory block, it sends its request
along the ith horizontal line to the jth switch, which then routes it down the jth
vertical line to the jth memory block. Each memory block possesses one decoder
circuit to determine which of the M/R locations is needed. Therefore, the total cost of
decoding circuitry isR x f(M/R). To thiswe must add of course thecost of theN x R
switches. Another approach to obtaining a weaker version of the SM SIMD is
described in the next section.

1.2.3.2 Interconnection-Network SIMD Computers. Weconcluded
section 1.2.3.1 by showing how the SM SIMD model can be made more feasible by
dividing the memory into blocks and making access to these blocks exclusive. It is
natural to think of extending thisidea to obtain a slightly more powerful model. Here
the M locations of the shared memory are distributed among the N processors, each
receiving M/N locations. In addition every pair of processorsare connected by atwo-
way line. This arrangement is shown in Fig. 1.5 for N = 5. At any step during the
computation, processor P; can receiveadatum from P; and send another oneto P, (or
to P;). Consequently, each processor must contain

(i) acircuit of cost f(N — 1) capable of decoding a log(N — 1)-bit address— this
allows the processor to select one of the other N — 1 processors for communi-
cating; and

(ii) acircuit of cost f (M/N) capable of decoding a log(M/N)-bit address provided
by another processor.

This model is therefore more powerful than the R-block shared memory, asit alows
instantaneous communication between any pair of processors. Severa pairs can thus
communicate simultaneously (provided, of course, nho more than one processor
attempts to send data to or expects to receive data from another processor). Thus,

PROCESSOR 1

PROCESSOR 2 PROCESSCR 5

PROCESSOR 3 PROCESSOR 4 Figure 15 Fully interconnected set o
processors.
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potentially all processors can be busy communicating all the time, something that is
not possiblein the R-block shared memory when N > R. We now discussa number of
features of this model.

(i) Price. The first question to ask is. What is the price paid to fully
interconnect N processors? Thereare N — 1 linesleaving each processor for a total of
N(N — 1)/2 lines. Clearly, such a network istoo expensive, especialy for large values
of N. Thisis particularly trueif we note that with N processors the best we can hope
for isan N-fold reduction in the number of stepsrequired by asequential algorithm, as
shown in section 1.3.1.3.

(i) Feagibility. Even if we could afford such a high price, the model is
unrealistic in practice, again for large vaues of N. Indeed, there is a limit on the
number of linesthat can be connected to a processor, and that limit isdictated by the
actual physical size of the processor itsalf.

(iii) Relation to SM SIMD. Findly, it should be noted that the fully
interconnected model as described is weaker than a shared-memory computer for the
same reason as the R-block shared memory: No more than one processor can gain
access simultaneously to the memory block associated with another processor.
Allowing thelatter would yield acost of N? x f (M/N), which isabout the same asfor
the SM SIMD (not counting the quadratic cost of the two-way lines): This clearly
would defeat our original purpose of getting a more feasible machine!

Simple Networks for SZMD Computers. It is fortunate that in most appli-
cationsa small subset of al pairwise connections is usually sufficient to obtain a good
performance. The most popular of these networks are briefly outlined in what follows.
Keep in mind that since two processors can communicate in a constant number of
stepsona SM SIM D computer, any algorithm for an interconnection-network SIM D
computer can be simulated on the former model in no more steps than required to
execute it by the latter.

(i) Linear Array. Thesimplest way tointerconnect N processorsisin theform
of aone-dimensional array, asshownin Fig. 1.6 for N = 6. Here, processor P;islinked
toits two neighbors P;_, and P;,, through a two-way communication line. Each of
the end processors, namely, P, and P, has only one neighbor.

(ii) Two-Dimensional Array. A two-dimensional network is obtained by
arranging the N processorsintoan m x marray, wherem = N'/2, asshown in Fig. 1.7
for m=4. The processor in row j and column k is denoted by P(j, k), where
0<jsm-1land0 < k< m-1 Atwo-way communication linelinks P(j, k) to its
neighbors P(j+ 1,k), P(j— 1,k), P(j,k + 1), and P(j, k — 1). Processors on the

Figure16 Linear array connection.



Introduction  Chap. 1

COLUMN

NUMBER 0 1 2 3
ROW 0 | pPoo P(0.1 P©.2 P03
NUMBER (0,0) (0.1) (0.2) (0.3}
P(1.0) P(1,1) P(1,2) P(1,3)
2 P(2,0) P(2,1) P(2.2) P(2.3)
3| PEo P31 Pe.2) PE3 | Figure 17 Two-dimensional array (or
mesh) connection.

boundary rows and columns have fewer than four neighbors and hence fewer
connections. This network is aso known as the mesh.

Both the one- and two-dimensional arrays possess an interesting property: All
the lines in the network have the same length. The importance of this feature, not
enjoyed by other interconnections studied in this book, will become apparent when
we analyze the time required by a network to solve a problem (see section 1.3.4.2).

(iii) Tree Connection.  In this network, the processors form a complete binary
tree. Such a tree has d levels, numbered 0 tod — 1, and N = 2¢ — 1 nodes each of
which is a processor, as shown in Fig. 1.8 for d = 4. Each processor at leved i is
connected by a two-way linetoits parent at level i + 1 and toits two children at level
i — 1. Theroot processor (at level d — 1) has no parent and the leaves (all of which are
at level 0) have no children. In this book, the terms tree connection (or tree-connected
computer) are used to refer to such a tree of processors.

(iv) Perfect Shuffle Connection. Let N processors Py, P,,...,Py_; be
available where N isa power of 2. In the perfect shuffle interconnection a one-way line
links P; to P;, where

,_{Zi forO<i<N/2-1,

77 2it1-N for N2<i<N -1,
asshownin Fig. 1.9for N = 8. Equivaently, the binary representation of jisobtained
by cyclically shifting that of i one position to the left.

I'n addition to these shuffle links, two-way linesconnecting every even-numbered
processor to its successor are sometimes added to the network. These connections,
called the exchange links, are shown as broken lines in Fig. 1.9. In this case, the
network is known as the shuffle-exchange connection.
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Figure 1.9 Perfect shuffle connection.

(v) Cube Connection. Assume that N =27 for some q > 1 and let N pro-
cessors be available Py, p,,..-,Py_y« A g-dimensional cube (or hypercube)isobtained
by connecting each processor to q neighbors. The g neighbors P; of P; are defined as
follows: The binary representation of j is obtained from that of i by complementing a
single bit. Thisisillustrated in Fig. .10 for q = 3. The indices of P,, P,,..., P, are
given in binary notation. Note that each processor has three neighbors.

There are severa other interconnection networks besides the ones just de-
scribed. The decision regarding which of these to use largely depends on the
application and in particular on such factors as the kinds of computations to be
performed, the desired speed of execution, and the number of processors available. We
conclude this section by illustrating a paralel algorithm for an SIMD computer that
uses an interconnection network.

Example 15

Assumethat the sum of n numbers x,, x,,..., x, heeds to be computed. Therearen — 1
additions involved in this computation, and a sequential algorithm running on a
conventional (i.e., SISD) computer will require n steps to complete it, as mentioned in
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Figure 1.10 Cube connection.

example 1.1. Using a tree-connected SIMD computer with log n levels and n/2 leaves,
the job can be donein log n steps as shown in Fig. 1.11 for n = 8.

The original input isreczived at the leaves, two numbers per leaf. Each leaf addsits
inputs and sends the result toits parent. The processis now repeated at each subsequent
level: Each processor receivestwo inputsfrom its children, computestheir sum, and sends
it toits parent. Thefinal result iseventually produced by the root. Since at each level ail
the processorsoperate in parallel, thesum iscomputed in log » steps. This compares very
favorably with the sequential computation.

The improvement in speed is even more dramatic when msets, each of n numbers,
areavailable and the sum of each set isto becomputed. A conventional machine requires
mn stepsin this case. A naive application of the parallel algorithm produces them sumsin

ouTPUT
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3

P

P 7

n Pg P P
Figure 111 Adding eight numbers on a
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m(log n) steps. Through a processknown as pipelining, however, we can do significantly
better. Notice that oncea set has been processed by the leaves, they arefree to receive the
next one. The same obser vation appliesto all processorsat higher levels. Hence each of
them — 1 setsthat follow the initial one can be input to the leaves one step after their
predecessor. Once the first sum exitsfrom the root, a new sum is produced in the next
step. The entire process therefore takeslogn + m— 1 steps. [

It should be clear from our discussion so far that SIMD computers are
considerably more versatile than those conforming to the M1SD model. Numerous
problems covering a wide variety of applications can be solved by parallel algorithms
on SIMD computers. Also, as shown by examples 1.4 and 1.5, algorithms for these
computers are relatively easy to design, analyze, and implement. In one respect,
however, this class of problemsis restricted to those that can be subdivided into a set
of identical subproblems all of which are then solved simultaneously by the same set of
instructions. Obviously, there are many computations that do not fit this pattern. In
some problems it may not be possible or desirable to execute al instructions
synchronously. Typicaly, such problems are subdivided into subproblems that are
not necessarily identical and cannot or should not be solved by the same set of
instructions. To solve these problems, we turn to the class of MIMD computers.

1.2.4 MIMD Computers

This class of computers is the most general and most powerful in our paradigm of
parallel computation that classifies parallel computers according to whether the
instruction and/or the data streams are duplicated. Here we have N processors, N
streams of instructions, and N streams of data, as shown in Fig. 1.12. The processors
here are of the type used in MISD computersin the sense that each possessesits own
control unit in addition toitslocal memory and arithmetic and logic unit. This makes
these processors more powerful than the ones used for SIMD computers.

Each processor operates under the control of an instruction stream issued by its
control unit. Thus the processors are potentially al executing different programs on
different data while solving different subproblems of asingle problem. This means that
the processors typically operate asynchronously. As with SIM D computers, commu-
nication between processors is performed through a shared memory or an intercon-
nection network. MM D computers sharing a common memory are often referred to
as multiprocessors (or tightly coupled machines) while those with an interconnection
network are known as multicomputers (or loosely coupled machines).

Since the processors on a multiprocessor computer share a common memory,
the discussion in section 1.2.3.1 regarding the various modes of concurrent memory
access applies here aswdl. Indeed, two or more processors executing an asynchronous
algorithm may, by accident or by design, wish to gain access to the same memory
location. We can therefore talk of EREW, CREW, ERCW, and CRCW SM MIMD
computers and algorithms, and various methods should be established for resolving
memory access conflicts in models that disallow them.
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Figure1.12 MIMD computer.

Multicomputersare sometimes referred to asdistributed systems. The distinction
is usually based on the physical distance separating the processors and is therefore
often subjective. A rule of thumb is the following: If al the processors are in close
proximity of one another (they are al in the same room, say), then they are a
multicomputer; otherwise (they are in different cities, say) they are a distributed
system. The nomenclature is relevant only when it comes to evaluating parallel
algorithms. Because processorsin a distributed system are sofar apart, the number of
data exchanges among them is significantly more important than the number of
computational steps performed by any of them.

The following example examines an application where the great flexibility of
MIMD computers is exploited.

Example 16

Computer programs that play games of strategy, such as chess, do so by generating and
searching so-called game trees. The root of the tree is the current game configuration or
position from which the program isto make a move. Children of theroot represent al the
positions reached through one move by the program. Nodes at the next level represent al
positions reached through the opponent's reply. This continues up to some predefined
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number d levels. Each ledf position is now assgned a vaue representing its " goodness”
from the program's point o view. The program then determinesthe path leading to the
best postion it can reach assuming that the opponent plays a perfect game. Findly, the
origind move on this path (i.e., an edge leaving the root) is selected for the program.

Asthere aretypicdly severa moves per position, gametreestend to be very large.
In order to cut down on the search time, these trees are generated as they are searched.
Theideais to explore the tree using the depth-first search method. From the given root
position, paths are created and examined one by one. First, acomplete path is built from
the root to a ledf. The next path is obtained by backing up from the current leef to a
position al d whose descendants have not yet been explored and building a new path.
During thegenerationd such a path it may happen that a position is reached that, based
on informationcollected so far, definitely leads to leaves that are no better than the ones
aready examined. In this case the program interruptsits search along that path and dl
descendants d that position are ignored. A cutoff is said to have occurred. Search can
now resume along a new path.

So far we have described the search procedureasit would be executed sequentialy.
One way to implement it on an MIMD computer would be to distribute the subtrees o
the root among the processors and let as many subtrees as possible be explored in
paralel. During the search the processors may exchange various pieces d information.
For example, one processor may obtain from another the best move found so far: This
may lead to further cutoffs. Another datum that may be communicated is whether a
processor has finished searching its subtree(s). If there is a subtree that is ill under
consideration, then an idle processor may be assigned the job o searching part d that
subtree.

This approach clearly does not lend itsdf to implementation on an SIMD
computer as the sequence d operations involved in the search is not predictablein
advance. At any given point, the instruction being executed variesfrom one processor to
another: While one processor may be generating a new position, a second may be
evaluatinga ledf, athird may be executinga cutoff, afourth may be backing up to start a
new path, afifth may becommunicating its best move, asixth may besignalingtheend o
itssearch, and soon. []

1.2.4.1 Programming MIMD Computers. As mentioned earlier, the
MIMD model of parallel computation is the most general and powerful possible.
Computers in this class are used to solve in parallel those problems that lack the
regular structure required by the SIM D model. Thisgenerality does not comefor free:
Asynchronousalgorithms are difficult to design, evaluate, and implement. In order to
appreciate the complexity involved in programming M | M D computers, it isimport-
ant to distinguish between the notion of a process and that of a processor. An
asynchronous algorithm isa collection of processes some or all of which are executed
simultaneously on a number o available processors. Initially, all processors are free.
The parallel algorithm startsitsexecution on an arbitrarily chosen processor. Shortly
thereafter it creates a number of computational tasks, or processes, to be performed. A
process thus corresponds to a section of the algorithm: There may be several processes
associated with the same algorithm section, each with a different parameter.

Oncea processiscreated, it must be executed on a processor. If afree processor
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is available, the process is assigned to the processor that performs the computations
specified by the process. Otherwise (if no free processor is available), the process is
gueued and waits for a processor to be free.

When a processor compl etes execution of a process, it becomesfree. If a process
iswaiting to beexecuted, then it can be assigned to the processor just freed. Otherwise
(if no processiswaiting), the processor is queued and waitsfor a process to be created.

The order in which processes are executed by processors can obey any policy
that assigns priorities to processes. For example, processes can be executed in a first-
in-first-out or in a last-in-first-out order. Also, the availability of a processor is
sometimes not sufficient for the processor to be assigned a waiting process. An
additional condition may have to be satisfied before the process starts. Similarly, if a
processor has already been assigned a process and an unsatisfied condition is
encountered during execution, then the processor is freed. When the condition for
resumption of that process is later satisfied, a processor (not necessarily the original
one)isassigned toit. Theseare but afew of the scheduling problems that characterize
the programming of multiprocessors. Finding efficient solutions to these problems is
of paramount importance if MM D computers are to be considered useful. Note that
none of these scheduling problems arise on the less flexible but easier to program
SIMD computers.

1.2.4.2 Special-Purpose Architectures. In theory, any parale al-
gorithm can be executed efficiently on the M 1M D model. Thelatter can therefore be
used to build parallel computers with a wide variety of applications. Such computers
are said to have a general-purpose architecture. In practice, by contrast, it is quite
sensible in many applications to assemble several processors in a configuration
specifically designed for the problem at hand. The result is a parallel computer well
suited for solving that problem very quickly but that cannot in general be used for any
other purpose. Such a computer issaid to have a special-purpose architecture. With a
particular problem in mind, there are several waysto design a special-purpose parallel
computer. For example, a collection of specialized or very simple processors may be
used in one of the standard networks such as the mesh. Alternatively, one may
interconnect a number of standard processors in a custom geometry. These two
approaches may also be combined.

Example 1.7

Black-and-whitepicturesarestored in computersin the form d two-dimensional arrays.
Each array entry representsa picture element, or pixel. A 0 entry representsa white pixd,
alentry ablack pixd. Thelarger thearray, the more pixdswe have, and hence the higher
theresolution, that is, the precision with which the pictureis represented. Oncea picture
isstored in that way, it can be processed, for example, to remove any noise that may be
present, increase the sharpness, fill in missng details, and determinecontoursd objects.

Assumethat it isdesired to executea very Smple noise remova agorithm that gets
rid d "sat" and "pepper' in pictures, that is, sparse white dots on a black background
and sparse black dots on a white background, repectively. Such an agorithm can be
implemented very efficiently on a set d very smple processorsin a two-dimensiona
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configuration where each processor is linked to its eight closest neighbors(i.e., the mesh
with diagonal connectionsin addition to horizontal and vertica ones). Each processor
corresponds to a pixd and stores its vadue. All the processors can now execute the
followingstepin pardld: if apixd iso(1) and dl its neighborsare 1(0), it changesitsvaue
to10). O

One final observation is in order in concluding this section. Having studied a
variety of approachesto building paralel computers, it is natural to ask: How isone
to choose a parallel computer from among the available models? We already saw how
one model can useits computational abilities to simulate an algorithm designed for
another model. I nfact, we shall show in the next section that one processor is capable
of executing any parallel agorithm. This indicates that all the models of parallel
computers are equivalent in terms of the problems that they can solve. What
distinguishes one from another is the ease and speed with which it solvesa particular
problem. Therefore, the range of applicationsfor which the computer will be used and
the urgency with which answers to problems are needed are important factors in
deciding what parallel computer to use. However, as with many things in life, the
choice of a paralel computer is mostly dictated by economic considerations.

1.3 ANALYZING ALGORITHMS

This book isconcerned with two aspects of parallel algorithms: their design and their
analysis. A number of algorithm design techniques were illustrated in section 1.2 in
connection with our description of the different models of parallel computation. The
examples studied therein also dealt with the question of algorithm analysis. Thisrefers
to the process of determining how good an algorithm is, that is, how fast, how
expensive to run, and how efficientit isin its use of the available resources. In this
section we define moreformally the various notions used in this book when analyzing
parallel algorithms.

Once a new algorithm for some problem has been designed, it is usualy
evaluated using the following criteria: running time, number of processors used, and
cost. Besidesthese standard metrics, a number of other technology-related measures
are sometimes used when it is known that the algorithm is destined to run on a
computer based on that particular technology.

1.3.1 Running Time

Since speeding up computations appears to be the main reason behind our interest in
building paralel computers, the most important measure in evaluating a parallel
algorithm is therefore its running time. This is defined as the time taken by the
algorithm to solvea problem on a parallel computer, that is, the time elapsed from the
moment the algorithm startsto the moment it terminates. If the various processors do
not al begin and end their computation simultaneously, then the running time is



22 Introduction  Chap. 1

equal to the timeelapsed between the moment the first processor to begin computing
starts and the moment the last processor to end computing terminates.

1.3.1.1 Counting Steps. Before actually implementing an algorithm
(whether sequential or parallel) on a computer, it is customary to conduct a
theoretical analysis of the time it will require to solve the computational problem at
hand. This is usually done by counting the number of basic operations, or steps,
executed by the algorithm in the worst case. This yields an expression describing the
number of such steps asa function of theinput size. The definition of what constitutes
a step varies of course from one theoretical model of computation to another.
Intuitively, however, comparing, adding, or swapping two numbers are commonly
accepted basic operationsin most models. Indeed, each of these operationsrequires a
constant number of time units, or cycles, on a typical (SISD) computer. The running
time of a paralel algorithm is usually obtained by counting two kinds of steps:
computational steps and routing steps. A computational step isan arithmetic or logic
operation performed on a datum within a processor. In a routing step, on the other
hand, a datum travels from one processor to another via the shared memory or
through the communication network. For a problem of size n, the parallel worst-case
running time of an algorithm, afunction of n, will be denoted by #(n). Strictly speaking,
the running time is also a function of the number of processors. Since the latter can
always be expressed as a function of n, we shall writet asafunction of the sized the
input to avoid complicating our notation.

Example 1.8

In example 1.4 we studied a parallel algorithm that sear chesafilewith nentrieson an N-
processor EREW SM SIMD computer. The algorithm requireslog N paralld steps to
broadcast the value to be searched for and n/N comparison steps within each processor.
Assuming that each step (broadcast or comparison)requiresone time unit, we say that
thealgorithmsrunsin log N + /N time, that is, t(n) = logN + »/N.

In general, computational stepsand routing steps do not necessarily require the
same number of time units. A routing step usually depends on the distance between
the processorsand typically takes alittle longer to execute than a computational step.

1.3.1.2 Lower and Upper Bounds. Given a computational problem for
which a new sequential algorithm has just been designed, it is common practice
among algorithm designers to ask the following two questions:

(i) Isit the fastest possible algorithm for the problem?

(i) If not, how does it compare with other existing algorithms for the same
problem?

The answer to thefirst question is usually obtained by comparing the number of
steps executed by the algorithm to a known lower bound on the number of steps
required to solve the problem in the worst case.
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Example 1.9

Sy that we want to compute the product d two » x n matrices. Since the resulting
matrix has re entries, at least this many steps are needed by any matrix multiplication
algorithm simply to produce the output. [

L ower bounds, such as the onein example 1.9, are usually known as obviousor
trivial lower bounds, as they are obtained by counting the number of steps needed
during input and/or output. A more sophisticated lower bound is derived in the next
example.

Example 1.10

The problem d sorting isdefined asfollows: A set & n numbersin random order is given;
arrange the numbersin nondecreasing order. There are n! possible permutationsd the
input and logn! (i.e., on the order o nlogn) bits are needed to distinguish among them.
Therefore, in the worst case, any agorithm for sorting reguires on the order of nlogn
steps at least to recognize a particular output. [

If the number of stepsan algorithm executesin the worst caseisequal to (or of
the same order as) the lower bound, then the algorithm is the fastest possible and is
said to be optimal. Otherwise, afaster algorithm may haveto beinvented, or it may be
possibletoimprovethelower bound. I n any casg, if the new algorithmisfaster than all
known algorithms for the problem, then we say that it has established a new upper
bound on the number of steps required to solve that problem in the worst case.
Question (ii) is therefore aways settled by comparing the running time of the new
algorithm with the existing upper bound for the problem (established by the fastest
previously known agorithm).

Example 1.11

To date, no agorithm is known for multiplying two n x n matrices in n* steps. The
standard textbook a gorithm requires on the order o n3 operations. However, the upper
bound on thisproblemisestablished at thetimed thiswriting by an algorithmrequiring
on the order d »n* operations at most, where x < 25.

By contrast, severa sorting algorithmsexigt that require on the order o at most
n log n operations and are hence optimal. 3

In the preceding discussion, we used the phrase "on the order of" to express
lower and upper bounds. We now introduce some notation for that purpose. Let f (n)
and g(n) be functions from the positive integers to the positive reals:

() Thefunction g(n)issaid tobed order at leastf (n), denoted Q(f (n)),if there are
positive constants ¢ and nq such that g(n) = ¢ (n)for al n= n,.

(i) Thefunction g(n) issaid to be d order at mostf (n), denoted O(f (n)),if there are
positive constants ¢ and n, such that g(n) < ¢ (n)for al n = n,.

This notation allows us to concentrate on the dominating term in an expression
describing a lower or upper bound and to ignore any multiplicative constants.
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Example 1.12

For matrix multiplication, the lower bound is R(n?) and the upper bound O(n?-%). For
sorting, the lower bound is R(nlogn) and the upper bound O(nlogn). O

Our treatment of lower and upper boundsin this section has so far concentrated
on sequential algorithms. Clearly, the same genera ideas aso apply to parale
algorithms while taking two additional factors into consideration:

(i) the model of parallel computation used and
(ii) the number of processors involved.

Example 1.13

Ann x n mesh-connected SIM D computer (seeFig. 1.7)is used to compute thesum o n?
numbers. Initialy, there is one number per processor. Processor P(n— 1,n — 1)isto
produce the output. Since the number initidly in P(0, 0) hasto be part d thesum, it must
somehow find its way to P(n— 1,n — 1). This requires at least 2(n — 1) routing steps.
Thus the lower bound on computing the sum is Q) Steps. [

These ideas are further elaborated on in the following section.

1.3.1.3 Speedup. Inevaluating aparallel agorithm for a given problem, it
is quite natural to do it in terms of the best available sequential algorithm for that
problem. Thusagood indication of the quality of a parallel algorithm isthespeedupit
produces. Thisis defined as

Speedup =

worst-case running time of fastest known sequential algorithm for problem
worst-case running time of parallel agorithm

Clearly, the larger the speedup, the better the paralel algorithm.

Example 1.14

In example 1.4, afiled n entriesis searched by an agorithm running on a CREW SV
SIMD computer with N processorsin 0(n/N) time. Since the running time d the best
possiblesequentia dgorithm is O(n), the speedup isequal to O(N). [

For most problems, the speedup achieved in this exampleis usualy the largest
that can be obtained with N processors. T o see this, assume that the fastest sequential
algorithm for a problem requires time T,, that a parallel algorithm for the same
problem requires time T,, and that T;/7T, > N. We now observe that any parallel
algorithm can be simulated on a sequential computer. Thesimulation iscarried out as
follows: The (only) processor on the sequential computer executes the paralel steps
serially by pretending that it is Py, then that it is P,, and so on. The time taken by the
simulationisthe sum of thetimestaken toimitateall N processors, whichisat most N
times T,. But NT, < T, implying that the simulation we have just performed solves
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the problem faster than the sequential algorithm believed to be the fastest for that
praoblem. This can mean one of two things:

(i) The sequentia algorithm with running time T; is not realy the fastest possible
and we have just found a faster one with running time N T,, thusimproving the
state of the art of sequential computing, or

(ii) thereisan error in our analysis!

Suppose we know that a sequential algorithm for a given problem is indeed the
fastest possible. Ideally, of course, one hopes to achieve the maximum speedup of N
when solving such a problem using N processors operating in parallel. In practice,
such a speedup cannot be achieved for every problem since

(i) it is not always possible to decompose a problem into N tasks, each requiring
(1/N)th of the time taken by one processor to solve the original problem, and

(i) in most cases the structure of the parallel computer used to solve a problem
usually imposes restrictions that render the desired running time unattainable.

Example 1.15

The problem of adding n numbers discussedin example 1.5issolved in O(log n)timeon a
tree-connected parallel computer using n — 1 processors. Here the speedup is O(n/log n)
since the best possiblesequential agorithm requires O(n) additions. This speedup is far
fromtheideal n — 1 and isdueto thefact that then numbers wereinput at theleavesand
the sum output at the root. Any algorithm for such a model necessarily requires(log n)
time, that is, the time required for a single datum to propagate from input to output
through all levels of the tree. [

1.3.2 Number of Processors

The second most important criterion in evaluating a parallel algorithm is the number
d processorsit requires to solvea problem. It costs money to purchase, maintain, and
run computers. When several processors are present, the problem of maintenance, in
particular, iscompounded, and the price paid to guarantee a high degree of reliability
rises sharply. Therefore, the larger the number of processors an algorithm uses to
solvea problem, the more expensivethe solution becomesto obtain. For a problem of
size n, the number of processors required by an algorithm, a function of n, will be
denoted by p(n). Sometimes the number of processorsis a constant independent of n.

Example 1.16
In example 1.5, the size of the tree depends on n, the number of terms to be added, and
pn)=n—1.

On the other hand, in example 1.4, N, the number of processors on the shared-
memory computer, isin no way related to n, thesize of thefile to be searched (except for
thefactthat N < n). Nevertheless,given avaluedf n, it is possibleto express N in terms of
nasfollows N = n* where 0 < x < 1. Thus p(n) =n*. [
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1.3.3 Cost

Thecost of a parallel algorithm isdefined as the product of the previous two measures;
hence

Cost = pardlel running time x number of processors used.

In other words, cost equals the number of steps executed collectively by all
processors in solving a problem in the worst case. This definition assumes that all
processors execute the same number of steps. If thisis not the case, then cost is an
upper bound on the total number of steps executed. For a problem of sizen, the cost of
a paralel algorithm, a function of n, will be denoted by ¢(n). Thus c¢(n) = p(n) x t(n).

Assume that a lower bound is known on the number of sequential operations
required in the worst case to solve a problem. If the cost of a paralel agorithm for
that problem matches this lower bound to within a constant multiplicative factor,
then thealgorithm issaid to be cost optimal. Thisis becauseany parallel agorithm can
be simulated on a sequential computer, as described in section 1.3.1. If the total
numbers of stepsexecuted during the simulationisequal to thelower bound, then this
means that, when it comes to cost, this parallel algorithm cannot beimproved upon as
it executes the minimum number of steps possible. It may be possible, of course, to
reduce the running time of a cost-optimal parallel algorithm by using more processors.
Similarly, we may beable to usefewer processors, while retaining cost optimality, if we
are willing to settle for a higher running time.

A pardlel algorithm is not cost optimal if a sequential algorithm exists whose
running time is smaler than the parallel algorithm's cost.

Example 1.17

In example 1.4, thealgorithm for searching a filewith n entries on an N-processor CREW
SM SIMD computer has a cost of

N x O(n/N) = O(n).

This cost is optimal since no randomly ordered file of size n can be searched for a
particular valuein fewer than nsteps in the worst case: One step is needed to compare
each entry with the given value.

In example 15, the cost of adding » numbers on an (n— 1)-processor tree is
(n—1) x O(logn). This cost is not optima since we know how to add » numbers
optimally using O(n) sequential additions. [

We notein passing that the preceding discussion leads to a method for obtaining
model-independent lower bounds on parallel algorithms. Let Q(T(n)) be a lower
bound on the number of sequential steps required to solve a problem of size n. Then
Q(T(n)/N)isalower bound on the running time of any parallel algorithm that uses N
processors to solve that problem.

Example 1.18

Since Ynlogn) steps is a lower bound on any sequentia sorting algorithm, the
equivalent lower bound on any parallel algorithm using n processorsis Q(log n). [
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When no optimal sequential algorithm is known for solving a problem, the
efficiency of a parallel algorithm for that problem is used to evaluateits cost. Thisis
defined as follows:

Efficiency =

worst-case running time of fastest known sequential algorithm for problem
cost o parallel algorithm

Usually, efficiency < 1; otherwise a faster sequential algorithm can be obtained from
the parallel onel

Example 119
Le the worst-caserunning time of thefastest sequential algorithm to multiply twon x n

matrices be O(n?-%) time units. The efficiency of a paralld algorithm that uses n?
processor s to solve the problem in O(n) time is O(n?-%)/0(n*. O

Finally, let the cost of a parallel agorithm for a given problem match the
running time of the fastest existing sequential algorithm for the same problem.
Furthermore, assume that it is not known whether the sequential agorithm is
optimal. In this case, the status of the paralel algorithm with respect to cost
optimality is unknown. Thus in example 1.19, if the parallel algorithm had a cost d
O(n?-%), then its cost optimality would be an open question.

1.3.4 Other Measures

A digital computer can be viewed asa large collection of interconnected logical gates.
These gatesare built using transistors, resistors, and capacitors. In today's computers,
gates come in packages called chips. These are tiny pieces d semiconductor material
used tofabricatelogical gatesand the wiresconnecting them. The number of gateson
achip determinesthelevd o integration being used to build thecircuit. One particular
technology that appears to be linked to future successesin parallel computingisVery
Large Scale Integration (VLSI). Here, nearly a millionlogical gatescan belocated on
asingle1-cm? chip. Thechipisthusableto housea number o processors, and severa
such chips may be assembled to build a powerful paralel computer. When evaluating
parallel algorithmsfor VLS, thefollowingcriteriaare often used: processor area, wire
length, and period of the circuit.

1.3.4.1 Area. If severa processors are going to share the*'real estate”” on a
chip, the area needed by the processors and wires connecting them as wdl as the
interconnection geometry determine how many processors the chip will hold.
Alternatively, if the number of processors per chip isfixed in advance, then the sze o
the chip itsdf is dictated by the total area the processorsrequire. If two agorithms
take the same amount of time to solve a problem, then the one occupying less area
when implemented asa VLS circuit is usually preferred. Note that when using the
area as a measure of the goodness of a paralel agorithm, we are in fact using the
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criterion in section 1.3.2, namely, the number of processors needed by the algorithm.
Thisis because the area occupied by each processor is normally a constant quantity.

1. 3.4.2Length. This refers to the length of the wires connecting the
processors in a given architecture. If the wires have constant length, then it usually
means that the architectureis

(i) regular, that is, has a pattern that repeats everywhere, and
(i) modular, that is, can be built of one (or just a few) repeated modules.

With these properties, extension of the design becomes easy, and the size of a
paralel computer can be increased by smply adding more modules. The linear and
two-dimensional arrays of section 1.2.3.2 enjoy this property. Also, fixed wire length
means that the time taken by asignal to propagate from one processor to another is
aways constant. If, on the other hand, wire length varies from one section o the
network to another, then propagation time becomes a function of that length. The
tree, perfect shuffle, and cube interconnections in section 1.2.3.2 are examples of such
networks. Again this measure isnot unrelated to thecriterion in section 1.3.1, namely,
running time, since the duration of a routing step (and hence the algorithm's
performance) depends on wire length.

1.3.4.3Period. Assumethat several setsof inputs are available and queued
for processing by a circuit in a pipeline fashion. Let A,, A,, ..., A, be a sequence of
such inputssuch that the time to process A, isthesamefor al 1 < i < n. Theperiod of
thecircuit is the time elapsed between the moments when processing of 4; and A,+,
begin, which should be the samefor al 1 <i<n

Example 1.20
In example 1.5 several sums were to be computed on atree-connected SIM D compuiter.
We saw that once the leaves had processed one set d numbersto be added and sent it to
their parentsfor further processing, they were ready to recave the next set. The period o
this circuit is therefore 1: One time unit (the time for one addition) separates two
inputs. O

Evidently, a small period is a desirable property of a parale algorithm. In
general, the period is significantly smaller than the time required to completely
process one input set. In example 1.20, the period is not only significantly smaller than
the O(log n) time units required to compute the sum of n numbers, but also happensto
be constant.

We conclude this section with a remark concerning the time taken by a parallel
algorithm to receiveitsinput and, once finished computing, to return its output. Our
assumption throughout this book isthat all the processors of a parallel computer are
capable of reading the available input and producing the available output in paralldl.
Therefore, such simultaneousinput or output operationswill be regarded as requiring
constant time.
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1.4 EXPRESSING ALGORITHMS

So far we have used an informal language to describe parallel algorithms. In our
subsequent treatment we would like to make this language a bit more formal while
keeping our statements of algorithms as intuitive as possible. As a compromise, a
high-level description will be used that combines plain English with widely known
programming constructs.

A parallel agorithm will normally consist of two kinds of operations. sequential
and parallel. In describing the former, we use statements similar to those of a typica
structured programming language (such as Pascal, say). Examples of such statements
include: if...then...dse, while...do, for...do, assignment statements, input and
output statements, and so on. The meanings of these statements are assumed to be
known. A left-pointing arrow denotes the assignment operator; thus a — b, means
that the value of bisassigned to a. The logical operations and, or, xor (exclusive-or),
and not are used in their familiar connotation. Thus, if a and b are two expressions,
each taking one of the values true or false, then

(i) (aand b) is trueif both a and b are true; otherwise (aand b) is false;

(ii) (aor b)istrueif at least one of a and b is true; otherwise (a or b) is false;
(iii) (axor b)istrueif exactly oneof a and bis true; otherwise (a xor b) isfalse; and
(iv) (not a) is trueif ais false; otherwise (not a) is false.

Parallel operations, on theother hand, are expressed by two kinds of statements:

(i) When severa steps are to be done at the same time, we write
do gepsi toj in pardld
dep i
sepiti
sepj. O
(i) When severa processorsare to perform the same operation simultaneously, we

write

fori=jtok doin pardld
{The operationsto be performed by P; are stated here}
edfor O

where i takes every integer value from j to k, or

fori=r,s, ...,t doin parallel
{The operationsto be performed by P, are stated here)
edfor O
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where the integer values taken by i are enumerated, or

for al iin S doin paralle
{The operations to be performed by P, are stated here}
end for O

where S is a given set of integers.

Comments in algorithms are surrounded with curly brackets { }, as shown in the
preceding. Curly brackets are also used to denote a sequence of elements as, for
example, in A={a,, a,, ...,a,-1} Or in E={s;e S:5; = m}. Both uses are fairly
standard and easy to recognize from the context.

1.5 ORGANIZATION OF THE BOOK

The remainder of this book is organized in thirteen chapters. Each chapter isdevoted
to the study of paralel agorithms for a fundamental computational problem or
problem area. The related operations of selection, merging, sorting, and searching are
covered in chapters 2-5, respectively. Several computations of either a combinatorial
or numerical nature are then examined, namely, generating permutations and
combinations (chapter 6), matrix operations (chapter 7), numerical problems(chapter
8), and computing Fourier transforms (chapter 9). Four application areas are treated
in chapters 10 (graph theory), 11 (computational geometry), 12 (traversing com-
binatorial spaces), and 13 (decision and optimization). Finaly, chapter 14 addresses a
number of basic problems for which the definition of a time unit (given in section
1.3.1.1)isinterpreted as the time required to perform an operation on a pair o bits.
Each chapter concludes with a set of problems, bibliographical remarks, and a list o
references.

1.6 PROBLEMS

11 Show how an M1SD computer can be used to handle multiple queries on a given object in
a database.

12 Three applications of M|SD computersare given in examples 1.2 and 1.3 and in problem
1.1. Can you think of other computations for which the MISD model is suitable?

13 There is no mention in section 1.2.2 of the possible communication among processors.
Indeed, in most applications for which the MISD model is practical, virtualy no
communication is needed. In some problems, however, it may be necessary for the
processors to exchange intermediate results. In addition, there should always be a
mechanism to allow a processor to signal the end of its computation, which may lead the
others to terminate their own. As with the SIMD and M| M D models, the processors can
communicate through the common memory they already share and that generates the
data stream. Alternatively, and for practical reasons, there could be a network connecting
the processors (in addition to the memory). In the latter case, the memory's job isto issue



Sec.

14

15

16

17

18

110

111

112

113

1.6 Problems 31

the data stream while al communications are done through the network. Describe a
problem that can be conveniently solved on an MISD computer where interprocessor
communication is possible,
In section 1.2.3.1, while discussing simulating multiple accesseson an EREW SM SIMD
computer, we mentioned that procedure broadcast was not suitable in the following
situation: Several multiple-read operations are attempted by several subsets of the set of
processors each subset trying to gain access to a different memory location. Strictly
speaking, broadcast may be used, but the resulting algorithm may beinefficient. Show how
this can be done and analyze the worst-case running time of the simulation.

Given a set of numbers {s,, 5;,...,sy}, dl sums of the form s, +s,, s, *'5, + 55,...,

s, s, T... T sy areto be computed. Design an algorithm for solving this problem using

N processors on each of the four submodels of the SM SIMD model.

Show that a fully connected network of N processors is equivalent to an EREW SM

SIMD computer with N processors and exactly N locations of shared memory.

Let an EREW SM SIMD computer have N processors and M locations of shared

memory. Givea procedure for simulating thiscomputer on afully interconnected network

of N processorseach with up to M/N locations in itslocal memory. How many steps on
the second computer are required to simulate one step on the first?

For each of theinterconnection networksin section 1.2.3.2, describea problem that can be

solved efficiently on that network. Give an algorithm for each problem, deriveits running
time and cost, and determine whether it is cost optimal.

It is required to determine the largest of a set of n numbers. Describe an algorithm for

solving this problem on each of the interconnection networks in section 1.232. Express

the running time of each solution as a function of n

Show how a fully connected network of N processors can be simulated on a cube-

connected network with the same number of processors such that each step of a

computation on the first network requires at most O(log?N) steps on the second.

Prove that an algorithm requiring t(#) time to solve a problem of size n on a cube-

connected computer with N processors can be simulated on a shuffle-exchange network

with the same number of processorsin O(log N) x t(n) time.

The plus-minus 2 (PM21) interconnection network for an N-processor SIM D computer is

defined as follows P; is connected to P, and P, where r=j + 2'mod N and

s=j—2modN, for 0 <i<logN.

(i) Let A be an algorithm that requires T steps to run on a cube-connected computer.
Prove that a PM2I-connected computer with the same number of processors can
execute A in at most 2T steps.

(i) Let A bean agorithm that requires T steps to run on a PM2I-connected computer
with N processors. Prove that a cube-connected computer also with N processorscan
execute A in at most TlogN steps.

Branch-and-bound is the name of a well-known algorithm for solving combinatorial
optimization problems. Let P be a problem for which we want to find a least-cost solution
fromamong N feasible solutions. The number N isassumed to be so large as to preclude
exhaustive enumeration. In branch-and-bound we think of the N feasible solutions as the
leaves of a giant tree. Each node on a path from root to lesf representsa partial solution
obtained by extending the partial solution represented by its parent. Starting with the
empty solution at the root, the algorithm generates al o the root's descendants.
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Expansion then continues from the node with least cost and the process isrepeated. When
the cost of a partial solution exceeds a certain bound, that nodeis no longer a candidate
for expansion. Search continues until a lesf is reached and there are no more nodes to be
expanded. This leaf represents a least-cost solution. Show how this algorithm can be
made to run in paralel on an M1 MD computer.

It is sometimes computationally infeasible (even with a parallel computer) to obtain exact
answers to some combinatorial optimization problems. Instead, a near-optimal solution is
computed using an approximation method. One such method is known as loca
neighborhood search. Let f be a combinatorial function that is to be minimized, say. We
begin by computing the value of f at a randomly chosen point. The neighbors o that
point are then examined and the value of /' computed for each new point. Each time a
point reduces the value of the function, we move to that point. This continues until no
further improvement can be obtained. The point reached is labeled alocal minimum. The
entire process is repeated several times, each time from a new random point. Finaly, a
global minimum iscomputed from all local minima thus obtained. Thisis the approximate
answer. Discuss various waysfor obtaining a parallel version of this method that runs on
an MIM D computer.

Example 1.6 and problems 1.13and 1.14 describe three applications of M1 M D computers.
Describe other problems that can be solved naturally on an MIMD computer and for
which neither the MISD nor SIMD models are appropriate. Propose an algorithm to
solve each problem.

Three general classes of parallel computers were discussed in this chapter, namely, the
MISD, SIMD, and MIMD models. Can you think of other models of parallel com-
putation? For every model you propose explain why it does, or does not, belong to one of
the preceding classes.

A satellite picture isrepresented asan n x n array of pixels each taking an integer value
between 0 and 9, thus providing various gray levels. It is required to smooth the picture,
that is, the value of pixéel (i, j) is to be replaced by the average of its value and those of its
eight neighbors (i—1,j), (i-1L,j—1), G,j-1, (T1j=1, (+1L)) (+1,jt0,
(i,j ¥ 1,and (i — 1, j + 1), with appropriate rounding. Describea special -purpose parallel
architecture for this problem. Assume that N, the number of processors available, is less
than n? the number of pixels. Give two different implementations of the smoothing
process and analyze their running times.

Let A and B be two n x n matrices with elements g; and b,;, respectively, for i,
j=1,2,...,n Itisrequired to compute C = A x B where the elements c;; of the product
matrix C are obtained from

n
c.-,-=k;a‘-kxbk,- forij=1,2,...,n

(a) Design a parallel algorithm for computing C on the following model of computation.
The model consists of n? processors arranged in an n x n array (n rows and n
columns). The processors are interconnected as follows:

1. The processors of each column are connected to form aring, that is, every processor
is connected to its top and bottom neighbors, and the topmost and bottommost
processors of the column are also connected.
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2 The processors of each row are connected to form a binary tree, that is, if the
processors in the row are numbered 1,2,...,n, then processor i is connected to
processors 2 and 2i + 1 if they exist.

The local memory of each processor consists of four locations at most.

(b) Analyzeyour algorithm.

119 Design a specia-purpose architecture for solving a system of linear equations.

120 Example 1.7 and problems 1.17-1.19 describe applications of special-purpose paralel
architectures. Can you think of other problems that can be efficiently solved on such
architectures?

1.7 BIBLIOGRAPHICAL REMARKS

Several recent books have been devoted entirely or in part to the subject o parallel
architectures. These include [Baer 1], [Cosnard], [Endow], [Fellmeier], [Fernbach], [Hillis
1], [Hockney], [Hwang 1], [Hwang 2], [Karin], [Kuck 1],[Kuck 2], [Legendi], [Leighton],
[Leiserson], [Lorin],[Mead], [Preston], [Reed], [Reijns],[Sege]], [Stone], [Uhr], [Ullman],
and [Wu]. Some dof the parallel computers that were built in research laboratories or have
appeared on the market are described in[Baer 2], [Frenkel 17, [Frenkel 2], [Hillis 2], [Hord],
[Jones 1], [Jones 2], [Lipovski], [Potter], and [Wah]. Reviews of parallel languages are
provided in [Gelernter], [Howe], and [Karp]. Issues pertaining to parallel operating systems
are addressed in [Evans] and [Oleinick]. The design and analysis of parallel algorithms are
covered in [Akl 3],[Cook 1],[Cook 2],[Graham], [Jamieson], [Kronsjé], [Kuhn], [Kung],
[Quinn], [Rodrigue], [Schendel], [Snyder], and [Traub].

Various approaches to simulating the shared-memory model by weaker modelsare given
in[Alt],[Karlin], [Mehlhorn],[Parberry], [Stockmeyer], [Ullman], [Upfal 1], [Upfal 2], and
[Vishkin]. Interconnection networks are reviewed in [Bhuyan] and [Wu].

The procedure described in example 1.6 for searching game treeson an M1 M D computer
isasimplified version of a parallel algorithm first proposed in [Akl 1]. Similar algorithms can
be found in [Akl 2] and [Mardland].

Good references for sequential algorithms are [Horowitz] and [Reingold]. Fast
sequential matrix multiplication algorithms, such as the one mentioned in example 1.11, are
reviewed in [Strassen]. The branch-and-bound and local neighborhood search methods
referred to in problems 1.13 and 1.14, respectively,are detailed in [Papadimitriou].
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Selection

2.1 INTRODUCTION

Our study of parallel algorithm design and analysis beginsby addressing thefollowing
problem: Given a sequence Sd n elements and an integer k, where1 < k< n, it is
required to determine the kth smallest element in S This is known as the selection
problem. It arisesin many applicationsin computer scienceand statistics. Our purpose
in this chapter is to present a paralel algorithm for solving this problem on the
shared-memory SIMD model. The algorithm will be designed to meet a number of
goals, and our anaysis will then confirm that these goals have indeed been met.

Westart in section 22 by defining the selection problem formally and deriving a
lower bound on the number of steps required for solving it on a sequential computer.
Thistrandates into a lower bound on the cost of any parallel algorithm for selection.
In section 2.3 an optimal sequential algorithm is presented. Our design goals are
stated in section 24 in the form of properties generaly desirable in any parallel
algorithm. Two procedures that will be often used in this book aredescribed in section
25. Section 2.6 contains the parallel selection algorithm and its analysis.

2.2 THE PROBLEM AND A LOWER BOUND
The problems studied in this and the next two chapters are intimately related and
belong to a family of problems known as comparison problems. These problems are
usually solved by comparing pairs of elements of an input sequence. In order to set the
stage for our presentation we need the following definitions.
2.2.1 Linear Order
The elements of a set 4 are said to satisfy a linear order < if and only if

(i) for any two elementsaand b of A, a<b,a=b,or b< a, and
(i) for any threeelementsa, bandcd A, ifa<band b<c,thena<c.

39
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Thesymbol < isto beread " precedes."” An example of a set satisfyingalinear order is
the set of all integers. Another example is the set of letters of the Latin alphabet. We
shall say that these sets are linearly ordered. Note that when the elements of A are
numbers, it is customary to use the symbol < to denote "'less than or equal to."

2.2.2 Rank

For a sequence S= {sy, s,...,5,; whose elements are drawn from a linearly ordered
set, the rank of an element s; of Sisdefined as the number of elementsin S preceding s;
plusl Thus, inS= {8, —3,2, —5, 6,0} the rank o 0 is 3. Note that if s; = s; then s;
precedes s; if and only if i <j.

2.2.3 Selection

A sequence S={s,, s,,...,s,} whose elements are drawn from a linearly ordered set
and an integer k, where 1 < k< n, are given. It is required to determine the element
with rank equal to k. Again,in S= {8, —3,2, —5,6,0} the element with rank 4is 2.
We shall denote the element with rank k by s,.

In the ensuing discussion, it is assumed without loss of generaity that Sis a
sequence of integers, as in the preceding example. Selection will therefore call for
finding the kth smallest element. We also introduce the following useful notation. For
areal number r, | r] denotes thelargest integer smaller than or equal tor (the"floor" of
N, while [#] denotes the smallest integer larger than or equal to r (the"ceiling” of r).
Thus 3.9 =3[3.11=4,and |3.0) =[3.01=3

2.2.4 Complexity

Three particular values d k in the definition of the selection problem immediately
come to one's mind: k=1, k =n, and k = [n/2]. In the first two cases we would be
looking for the smallest and largest elements of S, respectively. In the third case, sy,
would be the median of S that is, the element for which half of the elements of S are
smaller than (or equal to) it and the other haf larger (or equal). It seemsintuitive, at
least in the sequential mode of thinking and computing, that the first two cases are
easier to solve than when k = [n/2] or any other value. Indeed, fork =1 or k = n, all
one has to do is examine the sequence element by element, keeping track of the
smallest (or largest) element seen so far until the result is obtained. No such obvious
solution appears to work for 1< k< n

Evidently, if S were presented in sorted order, that is, S = {51, S2), - - - » S }> then
selection would be trivial: In one step we could obtain sg,. Of course, we do not
assume that thisis the case. Nor do we want to sort Sfirst and then pick the kth
element: This appears to be (and indeed is) a computationally far more demanding
task than we need (particularly for large values of n) since sorting would solve the
selection problem for all values of k, not just one.

Regardless of the value of k, one fact is certain: In order to determine the kth
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smallest element, we must examine each e ement of Sat least once. This establishes a
lower bound of Q(n) on the number of (sequential) steps required to solvethe problem.
From chapter 1, we know that this immediately impliesan Q(n) lower bound on the
cost of any parallel algorithm for selection.

2.3 A SEQUENTIAL ALGORITHM

In this section we study a sequential algorithm for the selection problem. There are
two reasonsfor our interest in a sequential algorithm. First, our parallel algorithm is
based on the sequential one and isa paralel implementation of it on an EREW SM
SIMD computer. Second, the parallel algorithm assumes the existence o the
sequential one and usesit as a procedure.

The algorithm presented in what follows in the form o procedure
SEQUENTIAL SELECT is recursive in nature. It uses the divide-and-conquer
approach to algorithm design. The sequence S and the integer k are the procedure's
initial input. At each stage of the recursion, a number of elements of S are discarded
from further consideration as candidates for being the kth smallest element. This
continues until the kth element is finaly determined. We denote by |S] the size of a
sequence S; thus initialy, |S| = n. Also, let Q be a small integer constant to be
determined later when analyzing the running time of the algorithm.

procedure  SEQUENTIAL SELECT (S, k)
Step1: if |S|<@Q then sort S and return the kth element directly

esesubdivide S into |S|/Q subsequencesdf Q elementseach (with up to Q—1
leftover elements)
end if.
Step 2 Sort each subsequence and determine its median.

Step3 Cal SEQUENTIAL SELECT recursively to find m the median of the |S|/Q
medians found in step 2.

Step4:  Create three subsequences Sy, Sa, and S, of elementsdf S smaller than, equal
to, and larger than m, respectively.

Step 5 if |§,|{=k then (the kth element of § must bein S,)
cal SEQUENTIAL SELECT recursively to find the kth element of §,
dseif |S,]+|S,] =k then return m
dsecal SEQUENTIAL SELECT recursively to find the (k--|S,1—|S,})th
element of S,
end if
endif. O

Note that the preceding statement of procedure SEQUENTIAL SELECT does not
specify how the kth smallest element of S is actually returned. One way to do this
would be to have an additional parameter, say, x, in the procedure's heading (besides




42

Sdlection  Chap. 2

S and k) and return the kth smallest element in x. Another way would be to smply
return the kth smallest as the first element of the sequence S.

Analysis. A step-by-step analysis of t(n), therunning time of SEQUENTIAL

SELECT, is now provided.

Step L Since Q is a constant, sorting S when |S] < Q takes constant time.
Otherwise, subdividing S requires c¢,n time for some constant c;.

Step 22 Since each of the [S|/Q subsequences consists of Q elements, it can be
sorted in constant time. Thus, c,n time is also needed for this step for some
constant c,.

Step 3 There are |§|/Q medians; hence the recursion takes t(n/Q) time.

Step 4: One passthrough ScreatesS,, S,, and S5 given m; therefore thisstep is
completed in ¢3n time for some constant c;.

Step 5. Since m is the median of |S|/Q elements, there are |S|/2Q elements larger
than or equal toit, asshown in Fig. 2.1.Each of the|S|/Q elements wasitsdf the
median of a set of Q elements, which meansthat it has @/2 elementslarger than
or equa to it. It follows that (|S|/2Q) x (Q/2) =|S|/4 elements of S are
guaranteed to be larger than or equal to m. Consequently, |8:{ < 3|S|/4. By a
similar reasoning, {S;| < 3|S|/4. A recursive cal in thisstep to SEQUENTIAL
SELECT therefore requires ¢(3n/4). From the preceding analysis we have

t(n) = cyn + t(n/Q) + t(3n/4), where ¢4 =c; + ¢, + ca.

The time has now come to specify Q. If we choose Q so that

Q ELEMENTS .
PER SUBSEQUENCE
IN SORTED

ORDER

L

n/Q + 3n/4 < n,

ln—-——— ISYQ SUBSEQUENCES ———-|

SMALLEST ELEMENT

m 'MEDIAN ELEMENT

| LARGEST ELEMENT

Figure21 Main idea behind procedure SEQUENTIAL SELECT.
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then the two recursive calls in the procedure are performed on ever-decreasing
sequences. Any value of Q = 5will do. Take Q =5, thus

t(n) = con T t(n/5) T t(3n/4).

This recurrence can be solved by assuming that
t(n) < csn for some constant c,.
Substituting, we get
t(n) < can T cs(n/S) T c5(3n/4)
= cen T c5(19n/20).

Finally, taking ¢, = 20c, yields

t(n) < ¢5(n/20) + ¢5(19n/20)

=cshn,

thus confirmingour assumption. I n other words, t(n) = O(n), which isoptimal in view
o the lower bound derived in section 2.24.

2.4 DESIRABLE PROPERTIES FOR PARALLEL ALGORITHMS

Before we embark in our study of a parald algorithm for the selection problem, it
may be worthwhile to set ourselves some design goals. A number o criteria were
describedin section 1.3for evaluating parallel algorithms. In light of thesecriteria, five
important properties that we desirea parallel algorithm to possess are now defined.

2.4.1 Number of Processors

Thefirst two propertiesconcern the number of processorsto be used by the algorithm.
Let n be the size of the problem to be solved:

(i) p(m) must be smaller than n.  No matter how inexpensive computers
become, it is unrealisticwhen designinga parallel algorithm to assume that we have at
our disposal more (or even as many) processors as there are items of data. Thisis
particularly true when nisvery large. It isthereforeimportant that p(n) be expressible
as a sublinear function of n, that is, p(n) =n*, 0 <x < 1.

(i) p{m) must beadaptive:  Incomputingin general, and in parallel computing
in particular, " appetite comes with eating.” The availability of additional computing
power always means that larger and more complex problemswill be attacked than
was possible before. Usersdf parallel computers will want to push their machines to
their limits and beyond. Even if one could afford to have as many processors as data
for a particular problem size, it may not be desirableto design an algorithm based on
that assumption: A larger problem would render the algorithm totally usdless.
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Algorithms using a number of processors that isa sublinear function of n[and hence
satisfying property (i)], such aslog n or n'/2, would not be acceptable either due to
their inflexibility. What we need are algorithms that possessthe"intelligence” to adapt
to the actual number of processors available on the computer being used.

2.4.2 Running Time

The next two properties concern the worst-case running time of the paralel agorithm:

(i) t(n) must besmall: Our primary motive for building parallel computers is
to speed up the computation process. It is therefore important that the parallel
algorithms we design befast. To be useful, a parallel algorithm should be significantly
faster than the best sequential algorithm for the problem at hand.

(i) ¢(m) must be adaptive: Idedlly, one hopes to have an algorithm whose
running time decreases as more processors are used. In practice, it is usually the case
that a limit is eventually reached beyond which no speedup is possible regardiess of
the number of processors used. Nevertheless, it is desirable that t(n) vary inversely
with p(n) within the bounds set for p(n).

2.4.3 Cost

Ultimately, we wish to have parallel algorithms for which ¢(n) = p(n) X t(n) dways
matches a known lower bound on the number of sequential operationsrequired in the
worst case to solve the problem. In other words, a parallel algorithm should be cost
optimal.

In subsequent chapters we shall see that meeting the preceding objectives is
usualy difficult and sometimesimpossible. In particular, when a set of processors are
linked by an interconnection network, the geometry of the network often imposes
l[imitson what can be accomplished by a parallel algorithm. It isa different story when
the algorithm is to run on a shared-memory paralel computer. Here, it is not at all
unreasonabletoinsist on these properties given how powerful and flexible the model
is.

In section 26 we describe a paralel algorithm for selecting the kth smallest
element of a sequence S= {sy,5,,...,s,}. The agorithm runs on an EREW SM
SIMD computer with N processors, where N < n. The algorithm enjoys al the
desirable properties formulated in this section:

(i) 1t usesp(n) = n!~* processors, where0 < X < 1. Thevalue df x isobtained from
N = n!~* Thus p(n) is sublinear and adaptive.

(i) It runsin t(n) = O(n*) time, where x depends on the number of processors
available on the parallel computer. The value of x isobtained in (i). Thus t(n) is
smaller than the running time of the optimal sequential algorithm described in
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section 2.3. It is also adaptive: The larger is p(n), the smaller is t(n), and vice
versa.

(i) It hasacost of c(n) = n* ~* x O(NX)= O(n), whichisoptimal in view o the lower
bound derived in section 2.2.4.

In closing this section we note that al rea quantities of the kind just described
(e.g., n' > and n*) should in practice be rounded to a convenient integer, according to
our assumption in chapter 1. When dealing with numbers o processorsand running
times, though, it isimportant that this rounding be done pessmi stical_l%. Thus, the real
ql-x representing the number of processors used by an algorithm should be
interpreted asn' "*}: Thisis to ensure that the resulting integer does not exceed the
actual number of processors. Conversaly, the real n* representing the worst-case
running time of an algorithm should beinterpreted as[n*]: Thisguaranteesthat the
resulting integer is not smaller than the true worst-case running time.

2.5 TWO USEFUL PROCEDURES

In the EREW SM SIMD model no two processors can gain access to the same
memory location simultaneously. However, two situations may arise in a typica
parallel agorithm:

(i) All processorsneed to read adatum held in a particular location d thecommon
memory.

(i) Each processor hasto compute a function of data held by other processorsand
therefore needs to receive these data.

Clearly, a way must be found to efficiently simulate these two operations that
cannot be performed in one step on the EREW modd. I n this section, we present two
procedures for performing these simulations. The two procedures are used by the
agorithm in this chapter as wel as by other parallel agorithms to be studied
subsequently. In what follows we assume that N processors Py, P,, ..., Py are
available on an EREW SM SIMD computer.

2.5.1 Broadcasting a Datum

Let D be a location in memory holding a datum that all N processors need at a
given moment during the execution of an algorithm. As mentioned in section 1.2.3.1,
thisisa specia case of the more general multiple-read situation and can be smulated
on an EREW computer by the broadcasting process described in example 14. We
now give this processformally as procedure BROADCAST. The procedure assumes
the presencedf an array A o length N in memory. The array isinitially empty and is




46 Sdection  Chap. 2

used by the procedure as a working space to distribute the contents of D to the
processors. Its ith position is denoted by A().

procedure BROADCAST (D, N, A)

Step 1: Processor P,
(i) reads thevaluein D,
(ii) stores it in its own memory, and
(iii) writesitin A(1).
Step2 for i=0to (log N—1)do
for j=2"+1to2'*tdoin paralle
Processor P;
(i) reads the value in A(j —2),
(i) storesit in its own memory, and
(iii) writesit in A(j).
end for
end for. O

The working of BROADCAST isillustrated in Fig. 22 for N=8and D=5.
When the procedure terminates, all processors have stored the value of D in their local
memoriesfor later use. Since the number of processors having read D doubles in each
iteration, the procedure terminates in O(log N) time. The memory requirement of
BROADCAST isan array of length N. Strictly speaking, an array of haf that length
will do sincein thelast iteration of the procedure all the processors have received the
value in D and need not write it back in A[see Fig. 2.2(d)]. BROADCAST can be
easily modified to prevent thisfinal write operation and hence usean array A of length
N/2.

Besides being generally useful in broadcasting data to processors during the
execution of an algorithm, procedure BROADCAST becomes particularly important
when starting an adaptive algorithm such as the one to be described in section 2.6.
Initially, each of the N processors knowsitsown index i, 1 < i < N, and the available
number of processors N. When a problem isto be solved, the problem size n must be
communicated to all processors. This can be done using procedure BROADCAST
before executing the algorithm. Each processor now computes x from N = n! =%, and
the algorithm is performed. Therefore, we shall assume henceforth that the parameter
x is known to al processors when an adaptive algorithm starts its computation.

2.5.2 Computing All Sums

Assume that each processor P; holdsin itslocal memory a number a,,1 < i < N. Itis
often useful to compute, for each P, thesum a, a3, *... + a. In example 1.5 an
algorithm wasdemonstrated for computing the sum of N numbersin O(log N) timeon
a tree-connected computer with O(N) processors. Clearly this algorithm can be
implemented on a shared-memory machine to compute the sum in the same amount
of time using the same number of processors. The question here is. Can the power
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Figure2.2 Distributing a datum to eight processorsusing procedure BROADCAST.

of the shared-memory model be exploited to compute all sums d the form
a,ta t...ta, 1<i<N, known as the prefix suns, using N processors in
O(log N) time? As it turns out, thisis indeed possible. The idea is to keep as many
processors busy as long as possible and exploit the associativity of the addition
operation. Procedure ALLSUMS given formaly in the following accomplishes
exactly that:

procedure ALLSUMS (a,,a,,...,4a,)

for j=0te log N—1do
for i=2/F+1to N doin parallel
Processor P;
(i) obtains a;_ ,, from P;_,, through shared memory and
(ii) replacesa; with a;_,, T a;.
end for
adfor. O

Theworking of ALLSUMS isillustrated in Fig. 2.3for N = 8 with 4;; referring to the
sum a; t a,,, ...+ a; When the procedure terminates, a; has been replaced by
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Figure23 Computing the prefix sums of eight numbers using procedure ALLSUMS
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a, ta,* ..t inthelocal memory o P;, for 1 <i < N. The procedure requires
O(log N) time since the number of processorsthat have finished their computation
doubles at each stage.

It isimportant to note that procedure ALLSUMS can be modified to solveany
problem where the addition operation is replaced by any other associative binary
operation. Examples d such operations on numbers are multiplication, finding the
larger or smaller of two numbers, and so on. Other operations that apply toa pair of
logical quantities (or a pair of bits) areand, or, and xor. Variousaspectsd the problem
of computing the prefix sumsin parallel are discussed in detail in chapters 13 and 14.

2.6 AN ALGORITHM FOR PARALLEL SELECTION

We are now ready to study an algorithm for parald selection on an EREW SM
SIMD computer. The agorithm presented as procedure PARALLEL SELECT
makes the following assumptions (some o these were stated earlier):

1 Asequenced integersS={s,, s, ...,s,; and anintegerk, 1 < k < n, aregiven,
and it is required to determine the kth smallest dement of S Thisisthe initial
input to PARALLEL SELECT.

2 The parallel computer consists of N processors Py, P,, ..., Py.

3 Each processor has received n and computed x from N =n»'"% where
0<x<l1.

4 Each o then® ~* processorsiscapable of storing a sequenced n* elementsin its
loca memory.

5 Each processor can execute procedures SEQUENTIAL SELECT,
BROADCAST, and ALLSUMS.

6. M isan array in shared memory d length N whose ith position is M ().

procedure PARALLEL SELECT (S K)

Step1: if |S|<4 then P, uses at most five comparisons to return the kth element
ese
(i) S is subdivided into |§]'~* subsequences S; o length |S|* each, where
1<i<|S|I™* and
(i) subsequences; is assigned to processor P;.
end if.

Step 2 for i=1t0|S|*"*doin paralle
(22) {P, obtains the median m, i.., the [|S;|/2]th element, of its associated
subsequence)
SEQUENTIAL SELECT (S;, T1S:1/21)
(22) P, stores m;in M(i)
end for.
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Step 3 {The procedureis cdled recursvely to obtain the median m o M}
PARALLEL SELECT (M,TIM1/2)).
Sep 4 The sequence Sis subdivided into three subsequences:

L={s;€8:s,<m},
E={s;eS: s;=mj}, and
G={s;eS:5;>m}.

Step 5 if JL|=k then PARALLEL SELECT (L, k)
dseif |L|+|E|=k then return m
else PARALLEL SELECT (G, k—|L|—|EJ)
end if
endif. O

Note that the precise mechanism used by procedure PARALLEL SELECT to return
the kth smallest element of S is unspecifiedin the preceding statement. However, any
of the ways suggested in section 2.3 in connection with procedure SEQUENTIAL
SELECT can be used here.

Analysis. We have deliberately given a high-level description o
PARALLEL SELECT toavoid obscuring the main ideas of the algorithm. In order to
obtain an accurate analysis of the procedure's running time, however, various
implementation details must be specified. As usual, we denote by t(n) the timerequired
by PARALLEL SELECT for an input of size n A function describing t(n) is now
obtained by analyzing each step of the procedure.

Step 1: T o perform this step, each processor needs the beginning address A of
seguence Si n theshared memory, itssize|S|, and the value of k. These quantities
can be broadcast to al processors using procedure BROADCAST: Thisrequires
O(log n* ~*) time. If |S] < 4, then P, returns the kth element in constant time.
Otherwise, P; computes the address of the first and last elements in S; from
A+ (i — )n*and A + in* — 1, respectively; this can be done in constant time.
Thus, step 1 takes c,log n time units for some constant c,.

Step 22 SEQUENTIAL SELECT finds the median of a sequence of length n* in
c,n* time units for some constant c,.

Step 3: Since PARALLEL SELECT is called with a sequence of length n' =%,
this step requires t(n' =) time.

Step 4: The sequence S can be subdivided into L, E, and G asfollows:

(i) First m is broadcast to all the processors in O(logn!~*) time using
procedure BROADCAST.

(i) Each processor P; now splits S; into three subsequences L,, E;, and G, of
elements smaller than, equal to, and larger than m, respectively. This can
be done in time linear in the size of §;, that is, O(n*) time.

(iii) The subsequences L,, E;, and G; are now merged toform L, E, and G. We
show how this can be done for the L;; similar procedures with the same
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running time can be derived for merging the E; and G;, respectively. Let
a;=|L;|. Foreachi, 1< i <n'% thesum

is computed. All these sums can be obtained by n'~* processors in

O(log n* ~*) time using procedure ALLSUMS. Now let z, == 0. All pro-

cessorssimultaneously merge their L; subsequencesto form L: Processor

P; copies L; into L starting at positionz;_, * 1 Thiscan bedonein O(n%)

time.

Hence the time required by this step is c;n* for some constant c;.
Step 5 Thesizeof L needed in this step has already been obtained in step 4
through the computation of z,:--. The same remark appliesto the sizesof E and
G. Now we must determine how much timeistaken by each o the two recursive
steps. Since m is the median d M, n! ~*/2 elements o S are guaranteed to be
larger than it. Furthermore, every element o M is smaller than at least /2
dements o S Thus |L| < 3n/4. Similarly, |G| < 3n/4. Consequently, step 5
requires at most ¢(3n/4) time.

The preceding analysis yields the following recurrence for t(n):
t(n) = c,log n + cn™ + t(n' %) + c3n* + t(3n/4),
whose solution is ¢(n) = O(n*) for n> 4. Since p(n) = n* ~*, we have
c(n) = p(n) x t(n) = n' =¥ x On*) = O(n).

This cost is optimal in view o the Q(n) lower bound derived in section 22. Note,
however, that n* is asymptotically larger than lognfor any x. (Indeed we have used
thisfactin our analysisd PARALLEL SELECT.)SinceN = n' “*and n/n™ < n/logn,
it follows that PARALLEL SELECT iscost optimal provided N < n/log n

Example21

Thisexampleillustrates the working of PARALLEL SELECT. Let S= {3, 14, 16,20, 8
31,22,12,33,1, 4,9, 10, 5,13, 7, 24, 2, 14, 26, 18, 34, 36, 25, 14, 27, 32, 35, 33}, that is,
n= 29and let k = 21, that is, we need to determine the twenty-first element of S Assume
further that the EREW SM SIMD computer available consists of five processors,
(N = 5). Hence|S|' ~* = 5,implyingthat 1 — x = 0.47796. Theinput sequenceisinitially
in the shared memory as shown in Fig. 2.4(a). After step 1, each processor has been
assigned a subsequence of S. The first four processorsreceive six elementseach, and the
fifth recelves five, as in Fig. 2.4(b). Now each processor finds the median of its
subsequencein step 2 and placesit in ashared-memory array M; thisisillustrated in Fig.
2.4(c). When PARALLEL SELECT iscaled recursively in step 3, it returns the median
m = 14 of M. Thethree subsequencesof S namely, L, E, and G of elements smaller than,
equal to, and larger than 14, respectively, are formed in step 4, as shown in Fig. 2.4(d).
Since|L] = 11and |E] = 3, |Lj + |E| < k and PARALLEL SELECT iscalled recursively
in step 5with S= G and k = 21 — (11+ 3) = 7. Since |G| = 15, we use 15 ~* = 36485,
that is, three, processorsduring this recursive step.

Again in step 1, each processor is assigned five elements, as shown in Fig. 2.4{e).
ThesequenceM of mediansobtained in step 2isshown in Fig. 2.4(f). Themedianm = 26
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Figure24 Selecting twenty-first dement of a sequence using procedure PARALLEL SELECT.

of M isdetermined in step 3. The three subsequences L, E, and G created in step 4 are
illustrated in Fig. 2.4(g). Since |L| = 6 and |E| = 1, the only element of E, namely, 26, is
returned as the twenty-first element o theinput. [

We conclude this section with the following observation. In designing
PARALLEL SELECT,weadopted the approach of taking a sequential algorithm for
a problem and turning it into a paralld algorithm. We were quite successful in
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obtaining an algorithm for the EREW SM SIMD model that is fast, adaptive, and
cost optimal while using a number of processors that is sublinear in the size of the
input. Thereare problems however, for which this approach does not work that well.
In these cases a parallel algorithm (not based on any sequential algorithm) must be
derived by exploiting the inherent parallelism in the problem. We shall study such
algorithms in subsequent chapters. Taken to the extreme, this latter approach can
sometimes offer surprises: A parallel algorithm provides an insight that leads to an
improvement over the best existing sequential algorithm.

2.1

22

23

24

25

26

2.7

28

29

2.7 PROBLEMS

In an interconnection-network SIM D computer, one of the N processors holds a datum
that it wishesto make known to al other processors. Show how this can be done on each
of the networks studied in chapter 1. Which of these networks accomplish this task in the
same order of time as required by procedure BROADCAST?

Consider an SIMD computer where the N processors are linked together by a perfect
shuffle interconnection network. Now assumethat the line connecting two processorscan
serve as a two-way link; in other words, if P; can send data to P; (using a perfect shuffle
link), then P; can aso send data back to P; (the latter link being referred to as a perfect
unshuffle connection). In addition, assumethat for i < N — 1, each P; islinked by a direct
one-way link to P, ,; call these the nearest-neighbor links. Each processor P; holds an
integer a,. It is desired that a; in P; be replaced witha, +a, *... * g; for al i. Can this
task be accomplished using the unshuffie and nearest-neighbor linksin the same order of
time as required by procedure ALLSUMS?

A parallel selection algorithm that uses O(n/log*n) processorsand runsin O(log®n) timefor
some 0 < s < 1 would befaster than PARALLEL SELECT sincelog*n isasymptotically
smaller than »n* for any x and s. Can you find such an agorithm?

If PARALLEL SELECT were to be implemented on a CREW SM SIMD computer,
would it run any faster?

Design and analyze a parallel algorithm for solving the selection problem on a CRCW SM
SIMD computer.

A tree-connected computer with nleavesstores oneinteger of asequenceS per leaf. For a
given k, 1 < k < n, design an algorithm that runs on this computer and selects the kth
smallest element of S,

Repeat problem 2.6 for alinear array of n processorswith one element of S per processor.
Repeat problem 26 for an n'/? x n*2 mesh of processors with one element of S per
processor.

Consider the following variant of the linear array interconnection network for SIMD
computers. In addition to the usual links connecting the processors, a further communi-
cation path known asa busisavailable, as shown in Fig. 25. At any given timeduring the
execution of an algorithm, precisely one of the processorsis allowed to broadcast one of
the input data to the other processors using the bus. All processors receive the datum
simultaneously. The time required by the broadcast operation is assumed to be constant.
Repeat problem 2.6 for this modified linear array.
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BUS

Figure25 Linear array with abus.

2.10 Modify the mesh interconnection network for SIMD machinesto includea busand repesat
problem 2.6 for the modified model.

2.11 Design an agorithm for solving the selection problem for the case k = 1 (i.e., finding the
smallest element of a sequence)on each of the following two models: (i) a mesh-connected
SIMD computer and (ii) the machinein problem 2.10.

212 A problem related to selectionis that of determining the k smallest elementsof asequence
S(inany order). On asequential computer thiscan bedone asfollows: First determinethe
kth smallest element (using SEQUENTIAL SEL ECT); then one pass through Ssufficesto
determinethek — 1 elementssmaller than k. The running time of thisalgorithm islinear in
thesizedf S Design aparallel algorithm to solvethis problem on your chosen submodel of
each of the following models and analyze its running time and cost: (i) shared-memory
SIMD, (ii) interconnection-network SIMD, and (iii) specialized architecture.

2.13 Modify procedure BROADCAST to obtain a formal statement of procedure STORE
described in section 1.2.3.1. Provide a different version of your procedure for each of the
write conflict resolution policies mentioned in chapter 1.

214 Insteps 1 and 2 of procedure SEQUENTIAL SELECT, a simple sequential algorithm is
required for sorting short sequences. Describe one such algorithm.

2.8 BIBLIOGRAPHICAL REMARKS

As mentioned in section 2.1, the problem of selection hasa number of applications in computer
science and statistics. In this book, for example, we invoke a procedure for selecting the kth
smallest out of n elementsin our development of algorithms for parallel merging (chapter 3),
sorting (chapter 4), and convex huil computation (chapter 11). An application toimage analysis
iscitedin[Chandran]. Instatistics, selectionisreferred to asthecomputation of order statistics.
In particular, computing the median element of a set of data is a standard procedure in
stetistical analysis. Theidea upon which procedure SEQUENTIAL SELECT is based wasfirst
proposed in [Blum]. Sequential algorithms for sorting short sequences, as required by that
procedure, can be found in [Knuth].

Procedures BROADCAST and ALLSUMS are adapted from [Akl 2]. Another way of
computing the prefix sums of n numbers is through a speciaized network of processors. One
such network is suggested by Fig. 2.3. It consists of logn rows of n processors each. The
processors are connected by the lines illustrating the flow of datain Fig. 2.3. The top row of
processors receivesthe n numbers asinput, and all the prefix sums are produced by the bottom
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row as output. This network has a cost of nlog®n. Networks with lower cost and their
applications are described in [Fich], [Kogge 1], [Kogge 2], [Ladner], [Reif], and [Stong]. A
parallel algorithm to compute the prefix sums on an EREW SM SIM D computer for the case
where the input numbers are presented in a linked list is proposed in [Kruskal].

Procedure PARALLEL SELECT was first presented in [Akl 1]. Other paralel a-
gorithmsfor selectingthe kth smallest out of nelementson the EREW SM SIM D computer are
described in[Cole 2] and [Vishkin]. The algorithm in[Cole 2] usesn/(log nlog*n) processors
and runs in time O(logn log*n), where log*n is the least i such that the ith iterate of the
logarithm function (i.e., log®n) islessthan or equal to 2 Notethat thisalgorithm iscost optimal
and faster than PARALLEL SELECT but isnot adaptive. The algorithm in[Vishkin] runsin
O(n/N) time using N < n/(log nloglog n) processors. This algorithm is both adaptive and cost
optimal; however, when compared with PARALLEL SELECT, its running timeis seen to be
larger and its range of optimality smaller. Finally, a parallel selection algorithm is obtained in
[AkI 3] that runs in O(log log n) time using O(n/log log n) processors. Examples of parallel
agorithms that aid in the design o sequential algorithms are provided in [Megiddo].

A model of parallel computation isdescribedin [Vaiant], whereonly the time taken to
perform comparisons among pairs o input elementsiscounted. Thus, the timetaken in routing
data from one processor to another, the time taken to specify what comparisons are to be
performed, and any other computations besides comparisons are all ignored. This is approp-
riately known as the comparison modd. A lower bound of Q(log log n) on the time required by n
processors to select using this model is derived in [Vdiant]. This bound is achieved by an
agorithm described in [Ajtai]. It runsin O(log log n) timeand isessentially a refinement of an
earlier O((log log n)?) algorithm appearing in [Cole 1].

A number of algorithms exist for selection on a tree-connected SIMD computer. An
algorithm in [Tanimoto] finds the kth smallest element on a tree machine with n leaves in
O(k * log n) time. Note that when k = n/2, this algorithm requires O(n) time, which is no better
than sequential selection. Thisisimproved in[Stout 1], where an algorithm is described whose
running time is strictly less than »® for any a > 0. It is shown in [Aggarwal] how a further
speedup can be achieved for the case where the elements of Sare taken from a fidd of size
O(n! **) for some constant y > 0: Selection can now be performed in O(log?n) time. In chapter
14 we shall study an algorithm for selection on the tree that was first proposed in [Cooper].
Thisalgorithm takes thetimeto operate on two bits (rather than two entire numbers) asits unit
of time.

The selection problem has a so been tackled on variants of basic models. An algorithm is
proposed in[Stout 2] that runs on a mesh-connected computer with a broadcast ability. The
model in [Chandran] is a cube-connected computer where each communication between two
processors counts as one routing step regardlessof how many elements are exchanged.

Variations on the problem of selection itself have also been studied. Algorithms for
finding the largest element of a sequence (a specia case of selection) appear in [Bokhari],
[Shiloach], and [Valiant]. A special-purpose architecture for selecting the k smallest out of n
elementsis described in [Wah].

Finally, al the resultsdiscussed so far were obtained by worst-caseanalyses. Sometimesit
isuseful to derive the timerequired by a parallel algorithm on theaverage. Here, the elementsof
theinput are assumed to obey a given probability distribution, and the expected running timeis
obtained. Algorithms specifically designed to achieve a good running time on the average are
said to be probabilistic. Examplesd such probabilistic agorithms are provided in [ Greenberg)]
for the tree-connected SIMD model and in [Reischuck] for the comparison model.
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Merging

3.1 INTRODUCTION

We mentioned in chapter 2 that selection belongs to a class of problems known as
comparison problems. The second such problem to be studied in this book is that of
merging. It is defined as follows: Let A = (a,, a, ...,a,) and B= (b, b,, ..., b} be
two sequencesof numberssorted in nondecreasing order; itisrequired to merge A and
B, that is, toform athird sequence C = {¢;, c,,...,¢,+,}, SO sorted in nondecreasing
order, such that each ¢; in C belongsto either A or B and each a; and each b; appears
exactly once in C. In computer science, merging arises in a variety of contexts
including database applications in particular and file management in general. Many
of these applications, o course, involve the merging of nonnumeric data.
Furthermore, it is often necessary once the merging is complete to delete duplicate
entries from the resulting sequence. A typical example is the merging of two mailing
lists each sorted alphabetically. These variants offer no new insights and can be
handled quite easily once the basic problem stated above has been solved.

Merging is very wdl understood in the sequential model of computation and a
simple algorithm exists for its solution. In the worst case, when r = s = n, say, the
algorithm runsin O(n) time. This is optimal since every element of A and B must be
examined at least once, thus making (n) steps necessary in order to merge. Our
purpose in this chapter is to show how the problem can be solved on a variety of
paralel computational models. In view of the lower bound just stated, it should be
noted that Q(n/N) time is needed by any parallel merging algorithm that uses N
processors.

We beginin section 32 by describing a special-purpose parallel architecturefor
merging. A parallel algorithm for the CREW SM SIMD model is presented in section
3.3 that is adaptive and cost optimal. Since the algorithm invokes a sequential
procedure for merging, that procedureis also described in section 3.3. It is shown in
section 34 how the concurrent-read operations can be removed from the parallel
algorithm of section 3.3 by simulatingit on an EREW computer. Finally,,an adaptive
and optimal algorithm for the EREW SM SIMD mode is presented in section 35
whose running timeissmaller than that of thesimulationin section 34. The algorithm

59
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is based on a sequential procedure for finding the median o two sorted seguences,
also described in section 3.5.

3.2 ANETWORK FOR MERGING

In chapter 1 we saw that special-purpose parallel architectures can be obtained in any
one of the following ways:

(i) using specialized processors together with a conventional interconnection

network,
(ii) using a custom-designed interconnection network to link standard processors,
or

(iii) using a combination of (i) and (ii).

In this section we shall take the third of these approaches. Merging will be
accomplished by a collection of very simple processors communicating through a
special-purpose network. This special-purpose paralée architecture is known as an
(r, s)-merging network. All the processors to be used are identical and are called
comparators. Asillustrated by Fig. 3.1, acomparator receivestwo inputsand produces
two outputs. The only operation a comparator iscapable of performing isto compare
the values of itstwo inputs and then place thesmaller and larger of the two on itstop
and bottom output lines, respectively.

Using these comparators, we proceed to build a network that takes asinput the
two sorted sequences A = {a,,4,,...,4,} and B={b,, b,,..., b} and produces as
output a single sorted sequence C ={c,, ¢;,...,¢,+,}. Thefollowing presentation is
greatly smplified by making two assumptions:

1. the two input sequences are of the same size, that is, r =s=n3x 1, and
2. nisa power of 2.

We begin by considering merging networksfor the first three values of n. When
n =1, a single comparator clearly suffices: It produces as output its two inputs in

X — > SMALLER OF X AND Y

Y LARGER OF X AND Y

Figure31 Comparator.
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sorted order. When n = 2, the two sequences A ={a, a} and B={b, b,} are
correctly merged by the network in Fig. 3.2. This is easily verified. Processor P,
compares the smallest element of A to the smallest element of B. Its top output must
be the smallest element in C, that is, ¢, . Similarly, the bottom output of P, must bec,.
Oneadditional comparisonis performed by P, to produce the two middle elements of
C. When n = 4, we can use two copies of the network in Fig. 32 followed by three
comparators, as shown in Fig. 33 for A= {3,5,7,9} and B = {2,4,6,8}.

In general, an (n, n)-merging network is obtained by the following recursive
construction. First, the odd-numbered elements of A and B, that s
{a,a, a, ...,a,_1}and{b,, b3, bs,...,b,_}, aremerged using an(n/2, n/2)-merging
network to produce a sequence {d,,d,,ds,...,d,}. Simultaneously, the even-
numbered elements of the two sequences, {a, a, a, ...,a} and {b,, by, bg,..., b},
are aso merged using an (n/2,n/2)-merging network to produce a sequence
{e1, ez, €3,...,¢,}. Thefina sequence {c,,c,,...,c,,} IS NOW Obtained from

¢y =dy, cy=e, Cz=min(d;+,¢e) and Cai+y = max(d;, 1, €)

for i=1,2,...,n—1

Thefinal comparisonsare accomplished by arank of n — 1 comparators asillustrated
in Fig. 34. Note that each of the (n/2, n/2)-merging networks is constructed by
applying the same rule recursively, that is, by using two (n/4, n/4)-merging networks
followed by a rank of (n/2) — 1 comparators.

The merging network in Fig. 3.4 is based on a method known as odd-even
merging. That this method works in general is shown as follows. First note that
d, = min(a,, b;) and e, = max(a,, b), which means that ¢; and ¢,, are computed
properly. Now observe that in the sequence {d,,d,,...,d,}, i elements are smaller
than or equal to d;,,. Each of these is an odd-numbered element of either A or B.
Therefore, 2i elementsof A and B are smaller than or equal to d;. . In other words,

a1 (;1
Py
)
P -
3
— C3
by
P
: 2
by Cy

Figure 3.2 Merging two sequences of two elements each.
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Figure3.3 Merging two sequences of four elements each.

diyy = ¢y Similarly, e; = ¢,;. On the other hand, in the sequence {c¢;, ¢5, ..., ¢4}, 2i
elements from A and B are smaller than or equal to ¢y;4+ 4. This means that c,;., is
larger than or equal to (i + 1) odd-numbered elements belonging to either A or B. In
other words, ¢y;+y = dirq. Similarly, ;44 > €. SiNce ¢y; < €541, the preceding
inequalitiesimply that ¢,; = min(d;, , €;), and ¢,;+; = max(d; . ,, e;), thus establishing
the correctness of odd-even merging.

Analysis. Our analysis of odd-even merging will concentrate on the time,
number of processors, and total number of operations required to merge.

(i) Running Time. We begin by assuming that a comparator can read its
input, perform a comparison, and produce its output al in one time unit. Now; let
t(2n) denote the time required by an (n,n)-merging network to merge two segquences o
length n each. The recursive nature of such a network yields the following recurrence
for t(2n):

t(2)=1 forn=1 (seeFig. 3.1),
t2n)=tm)+1 forn>1 (seeFig.34),

whose solution is easily seen to be t(2n) = 1+ logn. This is significantly faster than
the best, namely, O(n), running time achievable on a sequential computer.

(ii) Number of Processors. Here we areinterested in counting the number of
comparators required to odd—even merge. Let p(2n) denote the number of cornpara-
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Figure34 Odd-even merging.

tors in an (n, n)-merging network. Again, we have a recurrence:
r2)=1 forn=1 (seeFig. 3.1),
p2n)=2pm)+ (n—-1) forn>1 (seeFig. 3.4),
whose solution p(2n) =1+ n log nis also straightforward.

(iii) Cost. Since t(2n)=1*logn and p(2n) =1+ nlogn, the total number
of comparisons performed by an (n, n)-merging network, that is, the network's cost, is

c¢(2n) = p(2n) x t(2n)
= O(nlog?n).

Our network is therefore not cost optimal as it performs more operations than the

O(n) sufficient to merge sequentially.

—> Car
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Discussion. In this section we presented an example of a special-purpose
architecture for merging. These merging networks, as we caled them, have the
following interesting property: The sequence of comparisons they perform is fixed in
advance. Regardlessof theinput, the network will always perform the same number of
comparisonsin a predetermined order. Thisiswhy such networks are sometimes said
to be oblivious of their input.

Our analysis showed that the (n, n)-merging network studied is extremely fast,
especialy when compared with the best possible sequential merging algorithm. For
example, it can merge two sequences of length 22° elements each in twenty-one steps;
the same result would require more than two million steps on a sequential computer.
Unfortunately, such speed is achieved by using an unreasonable number of pro-
cessors. Again, for n = 22°, our (n, n)-merging network would consist of over twenty
million comparators! In addition, the architecture of the network is highly irregular,
and the wires linking the comparators have lengths that vary with n. This suggests
that, although theoretically appealing, merging networks would be impractical for
large values o n.

3.3 MERGING ON THE CREW MODEL

Our study of odd-even merging identified a problem associated with merging
networks in general, namely, their inflexibility. A fixed number of comparators are
assembled in afixed configuration to merge sequences of fixed size. Although this may
prove adequate for some applications, it is desirable in general to have a paralel
algorithm that adapts to the number of available processors on the parallel computer
at hand. This section describes one such algorithm. In addition to being adaptive, the
algorithm is also cost optimal: Its running time multiplied by the number of
processors used equals, to within a constant multiplicativefactor, the lower bound on
the number of operations required to merge. The algorithm runs on the CREW SM
SIMD model. It assumes the existence, and makes use of, a sequential procedure for
merging two sorted sequences. We therefore begin by presenting this procedure.

3.3.1 Sequential Merging

Two sequences of numbers A={a, a, ...,a} and B = {b;,b,,...,b,} sorted in
nondecreasing order are given. It is required to merge A and B to form a third
sequence C, also sorted in nondecreasing order. The merging process is to be
performed by a single processor. This can be done by the following algorithm. Two
pointers are used, one for each sequence. Initialy, the pointers are positioned at
elements a, and b, respectively. The smaller of a, and b, isassigned to ¢,, and the
pointer to the sequence from which ¢, cameis advanced one position. Again, the two
elements pointed to are compared: The smaller becomes ¢, and the pointer to it is
advanced. This continues until one of the two input sequences is exhausted; the
elementsleft over in the other sequence are now copied in C. Theagorithm isgivenin
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what follows as procedure SEQUENTIAL MERGE. Its description is greatly
simplified by assuming the existence of two fictional elements q, . , and b, ,, both of
which are equal to infinity.

procedure SEQUENTIAL MERGE (A, B, C)

Stepl: (11)ie1
(12)j« 1.

Step 2 for k=1 tor+sdo
if a;<b; then () ¢, «a
@i tit1
ese (i) e b;
() j—j+1
end if
end for. O

The procedure takes sequences A and B as input and returns sequence C as
output. Since each comparison leads to one element of C being defined, there are
exactly r s such comparisons, and in the worst case, when r =s = n, say, the
algorithm runsin O(n) time. In view of the €(n) lower bound on merging derived in
section 3.1, procedure SEQUENTIAL MERGE is optimal.

3.3.2 Parallel Merging

A CREW SM SIMD computer consistsof N processors Py, P,,...,Py. Itisrequired
to design a parallel agorithm for thiscomputer that takes the two sequences A and B
asinput and produces the sequence C as output, as defined earlier. Without loss of
generality, we assumethat r < s

Itisdesired that the parallel algorithm satisfy the properties stated in section 2.4,

namely, that

(i) the number of processors used by the algorithm be sublinear and adaptive,
(i) the running time of the algorithm be adaptive and significantly smaller than the
best sequential algorithm, and
(iii) the cost be optimal.

We now describe an algorithm that satisfies these properties. It uses N
processorswhere N < r and in the worst casewhenr = s = nrunsin O((n/N) + log n)
time. The algorithm is therefore cost optimal for N < n/log n. In addition to the basic
arithmetic and logic functions usually available, each of the N processors is assumed
capable of performing the following two sequential procedures:

1. Procedure SEQUENTIAL MERGE described in section 3.3.1.
2 Procedure BINARY SEARCH described in what follows. The procedure
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takes as input a sequence S= {sy,s,,...,5,; of numbers sorted in nondecreasing
order and a number x. If x belongs to S, the procedure returns the index k o an
element s, in S such that x =s,. Otherwise, the procedure returns a zero. Binary
search is based on the divide-and-conquer principle. At each stage, a comparison is
performed between x and an element of S Either the two areequal and the procedure
terminates or half of the elements of the sequence under consideration are discarded.
The processcontinues until the number of elementsleft isO or 1, and after at most one
additional comparison the procedure terminates.

procedure BINARY SEARCH (S, x, k)

Step1: (1.1) i1
(1.2) hen
(1.3) k0.

Step2: whilei<h do
(2.1) meL(it+hy2]
(2.2)if x=s,, then (i) km

(i) iht1
deeif x<s,, then h=m _1
eseiem+1
end if
end if
end while O

Since the number of elements under consideration is reduced by one-half at each step,
the procedure requires O(log n) time in the worst case.

We are now ready to describe our first parallel merging algorithm for a shared-
memory computer. The algorithm is presented as procedure CREW MERGE.

procedure CREW MERGE (A, B, C)

Step 11 {Sdect N — 1 dements o A that subdivide that sequenceinto N subsequences d
approximately the same size. Cdl the subsequenceformed by these N — 1 dements
A'. AsubsequenceB' of N — 1 dementsd B ischosen smilarly. Thisstepisexecuted
as fallows)
for i=1toN—1doin paralld
Processor P; determinesa; and b; from
(1.1) aj«agm
(1.2) bj« bl‘[s/N]

end for.

Step2 {Merge A and B' intoasequenced triplesV=1{o, v,,...,v,y_,}, Whereeech triple
consstsdf an dement of A' or B' followed by itspositionin A' or B' followed by the
name d its sequence d origin, that is, A or B. Thisis done as follows}

(2.1)for i=1toN —1doin paralld
{i) Processor P; uses BINARY SEARCH on B' to find the smdlest j such
that a; <b;
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(i) if j exigts then v,y ;-1 +(ai, i, A)
esev,y-1-(a; i, A)
end if
end for
(22) for i=1 toN-1doin parald
(i) Processor P; usss BINARY SEARCH on A' to find the smallest j Such
that b; <a;
(i) if j exigsthen v;+;_,«(b;, i, B)
ese v,y (b, i, B)
end if
end for.

Step 3  {Each processor merges and insertsinto C the eementsd two subsequences, one
from A and onefrom B. Theindicesdf the two elements (onein A and onein B) at
which each processor is to begin merging arefirst computed and stored in an array
Q o ordered pairs. This step is executed as follows))

(3.1) g(1)(1, 1)
(32) for i=2to N doin paralld
if vy;-2=(a, Kk, A) then processor P;
(i) uses BINARY SEARCH on B to find the smalest j such that b;> a;
(i) QW)«(k[r/NT, )
€else processor P;
(i) uses BINARY SEARCH on A to find the smallest j such thet a;> b,
(ii) QU)«—(J; k[s/NT)
end if
end for
(33) fori=1toNdoin paralld
Processor P, usss SEQUENTIAL MERGE and @(i)=(x, y) to merge
two subseguencesone beginning at a and the other at b, and placesthe
result d the merge in array C beginning at position x Ty — 1. The
merge continues urtil
(i) an dement larger than or equal to the firs component of vy; is
encountered in eech d A and B (Wheni <N -1)
(i) no dements areleftin either A or B (wheni=N)
end for. O

Before analyzing the running time of the algorithm, we make the following two
observations:

(i) In general instances, an element a; d A is compared to an element b; of B to
determinewhichissmaller; if it turnsout that a; = b;, then the algorithm decides
arbitrarily that a; is smaller.

(ii) Concurrent-read operations are performed whenever procedure BINARY
SEARCH isinvoked, namely, in steps 2.1, 2.2, and 3.2. Indeed, in each of these
instances several processors are executing a binary search over the same
sequence.




68 Merging  Chap.3

Analysis. A step-by-step analysis of CREW MERGE follows:

Step 1. With all processors operating in parallel, each processor computes two
subscripts. Therefore this step requires constant time.

Step 2: Thisstep consists of two applications of procedure BINARY SEARCH
to a sequence of length N — 1, each followed by an assignment statement. This
takes O(log N) time.
Step 3: Step 3.1 consistsdf a constant-time assignment, and step 3.2 requires at
most O(log s) time. To analyze step 3.3, we first observe that V contains 2N — 2
elements that divide C into 2N — 1 subsequences with maximum size equal to
(T'r/NT + [s/N7). This maximum size occursif, for example, one element q; of A
equals an element b; of B; then the [r/N elements smaller than or equal to a;
(and larger than or equal to a;_;) are also smaller than or equal to b, and
similarly, the [s/N elements smaller than or equal to b; (and larger than or
equal to b;_,) are also smaller than or equal to a;. In step 3 each processor
creates two such subsequences of C whose total sizeis therefore no larger than
2A[r/N1+ [s/N7), except P, which creates only one subseguence of C. It
follows that procedure SEQUENTIAL MERGE takes at most O((r + s)/N)
time.

Intheworst case, r = s = n,and sincen = N, thealgorithm's running time
is dominated by the time required by step 3. Thus

t(2n) = O((n/N) *+ logn).

Since p(2n) = N, ¢(2n) = p(2n) x t(2n) = O(n* N logn), and the algorithm is
cost optimal when N < n/logn.

Example 3.1

Assume that a CREW SM SIM D computer with N = 4 processorsisavailable and it is
required to mergeA = {2, 3,4,6,11,12,13,15.16,20,22,24} and B = {1,5,7,8,9, 10, 14,
17, 18, 19, 21, 23}, that is, r =s = 12.

The two subsequences A' = {4, 12, 16) and B’ = {7, 10, 18) arefound instep 1 and
then merged in step 2 to obtain

V=1{41,4),(7,1,B), (10, 2, B), (12, 2, A), (16, 3, A), (18, 3, B)}.

In steps 3.1 and 32, (1) =(1, 1), Q(2)= (5, 3), Q(3) = (6, 7), and Q(4) = (10, 9) are
determined. In step 3.3 processor P, begins at elementsa, = 2and b, = 1 and merges all
elementsof A and B smaller than 7, thus creating the subsequence {1, 2, 3, 4, 5, 6} of C.
Similarly, processor P, begins at a, = 11 and b; = 7 and merges all elements smaller
than 12, thus creating {7, 8, 9, 10, 11). Processor P, beginsat a, = 12 and b, = 14 and
creates {12, 13, 14, 15, 16, 17). Finally P, beginsat a,, = 20and b, = 18 and creates {18,
19, 20, 21, 22, 23, 24}. The resulting sequence C is therefore {1, 2, 3,4, 5,6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24). The elements of A" and B' are shown
underlined in C.
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3.4 MERGING ON THE EREW MODEL

As we saw in the previous section, concurrent-read operations are performed at
severa places of procedure CREW MERGE. We now show how this procedure can
be adapted to run on an N-processor EREW SM SIM D computer that, by definition,
disalows any attempt by more than one processor to read from a memory location.
Theideadf the adaptationisquite smple: All we have to doisfind a way to simulate
multiple-read operations. Once such a simulation is found, it can be used by the
parallel merge algorithm (and in general by any agorithm with multiple-read
operations) to perform every read operation from the EREW memory. Of course, we
require the simulation to be efficient. Simply queuing all the requests to read from a
given memory location and serving them one after the other is surely inadequate: It
can increase the running time by afactor of N in the worst case. On the other hand,
using procedure BROADCAST of chapter 2 is inappropriate: A multiple-read
operation from a memory location may not necessarily involve al processors.
Typically, several arbitrary subsets of the set of processors attempt to gain access to
different locations, one location per subset. In chapter 1 we described a method for
performing the simulation in thisgeneral case. Thisis now presented moreformally as
procedure MULTIPLE BROADCAST in what follows.

Assume that an algorithm designed to run on a CREW SM SIMD computer
requiresa total of M locations of shared memory. In order to simulate this algorithm
on the EREW model with N processors, where N = 27 for g = 1, we increase the size
of the memory from M to M(2N — 1). Thus, each of the M locations is thought of as
the root of a binary tree with N leaves. Such a tree has q * 1 levels and a total of
2N — 1 nodes, as shown in Fig. 35 for N = 16. The nodes of the tree represent
consecutive locations in memory. Thusif location D isthe root, then its left and right
children are D + 1 and D + 2, respectively. In general, the Ieft and right children of
D+ xaeD*2x+ 1and D+ 2x + 2, respectively.

Assumethat processor P; wishesat some point to read from somelocation d(i) in
memory. It places its request at location d(i) + (N — 1) + (i — 1), a lesf of the tree
rooted at d(i). Thisis done by initializing two variables local to P;:

1 level(i), which stores the current level of the tree reached by P/s request, is
initialized to O, and

2 loc(i), which stores the current node of the tree reached by P;s request, is
initialized to (N — 1) + (i — 1). Note that P; need only store the position in the
tree relative to d(i) that its request has reached and not the actual memory
location d(i) + (N — 1) + (i — 1).

The simulation consists of two stages. the ascent stage and the descent stage. During
the ascent stage, the processors proceed as follows: At each level a processor P;
occupying a left child isfirst given priority to advanceits request onelevel up thetree.
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Figure35 Memory organization for multiple broadcasting.

It does so by marking the parent location with a special marker, say, [i]. It then
updatesits level and location. In this case, a request at the right child isimmobilized
for the remainder of the procedure. Otherwise (ie., if there was no processor
occupying the left child) a processor occupying the right child can now "clam™ the
parent location. This continues until at most two processors reach level (log N) — 1.
They each in turn read the value stored in the root, and the descent stage commences.
Thevaluejust read goesdown the tree of memory locations until every regquest to read
by a processor has been honored. Procedure MULTIPLE BROADCAST follows.

procedure MUL TIPLE BROADCAST (d(1), d(2), .. ., d(N))

Stepl: for i=1to N doin paralld
{P; initializeslevel(i) and loc(i)}
(1.2) level(i))«0
(12) loci) « N +i-2
(1.3) store[i] in location d(i) + loc(i)
end for.

Step2: for v=0to(log N)— 2do
(21) fori=1to N doin paralld
{P; at aleft child advances up its tree}
(21.1) x « [(loc(i) — 1)/2}
(2.1.2) if loc(i) isodd and level(i}=v
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then (i) loc(i) « x
(i) store[i] in location d(i) T loc(i)
(iii) level(i) « level(i) T 1
end if
end for
(22) for i=1to Ndoin paralld
{P; at aright child advances up its tree if possible}
if d(i) + x does not already contain a marker [j] for somel<j< N
then (i) loc(i) « X
(i) store[i] in location d(i) * loc(i)
(i) level(i) « level(i) +1
end if
end for
end for.

Step 3 for v = (log N) — 1 doan to 0 do
(31) for i=1to Ndoin paralld
{P; at a left child reads from its parent and then moves down the tree}
(3.1.1) x « |(loc(i) — 1)/2}
(312) y« (2 x loc(i)) + 1
(3.1.3) if loc(i) is odd and level(i) = v
then (i) read the contents of d(i) + x
(i) write the contents of d(i) + x in location
d(i) T loc(i)
(iii) level(i) « level(i) — 1
(iv) if location d(i) Ty contains [i]
then loc(i) <y
dseloc(i) «y T 1
end if
end if
end for
(32) for i=1to N doin paralld
{P; at aright child reads from its parent and then moves down the tree}
if loc(i) is even and leveli)=v
then (i) read the contents of d(i) T x
(i) write the contents of d(i) + x in location d(i) + loc(i)
(i) level(i) < level(i) — 1
(iv) if location d(i) +y contains[i]
then loc(i) « y
dseloc(i) -y T 1
end if
end if
end for
end for. [

Step 1 of the procedure consists of three constant-time operations. Each of the ascent
and descent stages in steps 2 and 3, respectively, requires O(log N ) time. The overall
running time of procedure MULTIPLE BROADCAST is therefore O(log N).
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Figure36 Memory contents after step 2 of procedure MUL TIPLE BROADCAST.

Example 3.2

Let N = 16 and assumethat at a given moment during theexecution o aCREW parallel
algorithm processors Py, P,, P, P, Pg, Py, P14, and P need to read a quantity Q
from a location D in memory. When simulating this multiple-read operation on an
EREW computer usng MULTIPLE BROADCAST, the processors place their requests
at the appropriateleavesd atreed locationsrooted at D during step 1, as shown in Fig.
3.5. Figure 3.6 shows the positionsd the various processors and the contentsd memory
locationsat the end o step 2. The contentsd the memory locations at theend o step 3
areshown in Fig.3.7. O

Note that:

1. The markers[i] are chosen so that they can be easily distinguished from data
values such as Q.

2. If during a multiple-read step of the CREW algorithm being simulated, a
processor P; does not wish to read from memory, then d(i) may be chosen
arbitrarily among the M memory locations used by the algorithm.

3. When the procedure terminates, the value of level(i) is negative and that of loc(i)
is out of bounds. These values are meaningless. This is of no consequence,
however, since level(i) and loc(i) are always initialized in step 1.

We are now ready to analyze the running time t¢(2n) of an adaptation of procedure
CREW MERGE for the EREW model. Since every read operation (simple or
multiple) issimulated using procedure MULTIPLE BROADCAST in O(log N) time,
the adapted procedure is at most Oflog N) times slower than procedure CREW
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Figure37 Memory contentsat end of procedure MULTIPLE BROADCAST.

MERGE, that is,
t(2n) = O(log N) x O(n/N * log n)
= O((n/N)log n + log?n).
The algorithm has a cost of
¢(2n) = O(n log nt N log?n)

which is not optimal. Furthermore, since procedure CREW MERGE uses O(n)
locations of shared memory, the storage requirements of its adaptation for the EREW
model are O(Nn). In the following section an algorithm for merging on the EREW
model is described that is cost optimal and uses only O(rn) shared-memory locations.

3.5 ABETTER ALGORITHM FOR THE EREW MODEL

We saw in the previous section how a direct simulation of the CREW merging
algorithm on the EREW model is not cost optimal. This is due to the logarithmic
factor awaysintroduced by procedure MULTIPLE BROADCAST. Clearly, in order
to match the performance of procedure CREW M ERGE, another approach is needed.
In this section we describe an adaptive and cost-optimal parallel algorithm for
merging on the EREW SM SIMD model of computation. The algorithm mergestwo
sorted sequences A = (a,, a,,...,8) and B = {b,, b,,..., b} into a single sequence
C={c1,C35-.-+Cr4s}. It USES N processors Py, P,,..., Py, wherel< N < r + 5 and,
in theworst casewhenr = s = n, runsin 0((n/N)  log N log n) time. A building block
of the algorithm is a sequential procedure for finding the median of two sorted
sequences. This procedureis presented in section 3.5.1. The merging algorithm itself is
the subject of section 3.5.2.
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3.5.1 Finding the Median of Two Sorted Sequences

I n this section we study a variant of the selection problem visited in chapter 2. Given
two sorted sequences A ={a,,a,, ...,a,} and B={b,, b, ...,b), wherer,s 2 1, let
A B denote the sequence o length m=r + s resulting from merging A and B It is
required to find the median, that is, the {m/2th element, of A B Without actually
forming A.B, the algorithm we are about to describe returns a pair (a,, b,) that satisfies
the following properties:

1 Either a, or b, isthe median of 4.B, that is, either a, or b, islarger than precisely
[m/2] — 1 elements and smaller than precisely | m/2} elements.
2 If a, isthe median, then b, iseither
(i) the largest element in B smaller than or equal to a, or
(ii) the smallest element in B larger than or equal to a,
Alternatively, if b, is the median, then a, is either
(i) the largest element in A smaller than or equal to b, or
(i) the smallest element in A larger than or equal to b,.
3. If more than one pair satisfies 1 and 2, then the algorithm returns the pair for
which x +y is smallest.

Weshall refer to(a,, b,) asthe median pair of A B. Thusx and y are theindicesd
the median pair. Note that a, isthe median of A.B if either

() a, >b,and x ty — 1 =[m/2] — L or
(i) a, <b,and m — (xty — 1)=Lm/2].

Otherwise b, is the median of A B.

Example 3.3

Le A={2 57 10) and B= {1, 4, 8,9) and observe that the medianf AB is5 and
beongs to A. There are two median pairs stisfying properties1 and 2

(i) & by) =1(5,4), where 4is the largest dement in B smdler than or equa to 5
(i) @ bs)=1(5,8), where 8 is the smdlest dement in B larger than or equa to 5.
The median pair is therefore (5,4). O

The agorithm, described in what follows as procedure TWO-SEQUENCE
MEDIAN, proceeds in stages. At the end of each stage, some elements are removed
from consideration from both A and B. We denote by n, and ny; the number of
elements of A and B, respectively, still under consideration at the beginning of a stage
and by w thesmaller of | n,/2] and | ng/2]. Each stageisasfollows. The mediansa and
b of theelements till under consideration in A and in B, respectively,are compared. If
a = b, then the largest (smallest) w elements of A(B) are removed from consideration.
Otherwise, that is, if a < b, then the smallest (largest) w elements of A(B) are removed
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from consideration. This processis repeated until there is only one element left still
under consideration in one or both of the two sequences. The median pair isthen
determined from a small set of candidate pairs. The procedure keeps track of the
elements still under consideration by using two pointers to each sequence: low, and
high, in A and low, and high, in B.

procedure TWO-SEQUENCE MEDIAN (A, B, x, y)

Step1: (11 low, ~1
(12) low, «1
(1.3) high, «r
(14) high, «s
15) ny<r
(1.6) ngp«<s

Step2 whilen >1andn > 1do
(2.1) u -« low, T [(high, — low, — 1)/2]
(2.2) v« low, T [(highg — low, — 1)/2]
(2.3) w < min([n,/2], Lng/2])
24 ny=n —w
(25) nge—ng—w
26) ifa, >h
then (i) high, « high, —w
(i) low, —low, *w
dse (i) low, «low, Tw
(ii) highg«highy—w
end if
end while.

Step 3 Return as x and y the indices of the pair from {a,_,, a, a, 1} X {by—1, b, bys1}
satisfying properties 1-3 of a median pair. []

Notethat procedure TWO-SEQUENCE MEDIAN returnstheindicesof the median
pair (a, b,) rather than the pair itself.

Example 34

Let A = {10, 11, 12, 13, 14, 15, 16, 17,18) and B= {3, 4, 5, 6, 7, 8, 19, 20, 21, 22}. The
following variables are initialized during step 1 of procedure TWO-SEQUENCE
MEDIAN: low, =low, =1, high, =n, =9, and high, = n = 10.

In the first iteration of step 2, u =v =5 w =min(4,5)=4, n,=5 and n =6.
Since a, > b, high, =low,= 5. In the second iteration, 4=3, v=7, w=min(2, 3)=2,
n =3 andn =4Sincea, < b, low, = 3and high, = 8. In the third iteration, u = 4,
v=6,w=min(1,2)=1,n,=2,and n =3 Sincea > bg, high, =4andlow, =6.In
the fourth and fina iteration of step 2, U=3 v=7, w=min(l,1)=1, n, =1, and
n =2 Sincea, <b,, low,=4and high, =7.

In step 3, two of the nine pairsin {11, 12, 13) x {8, 19, 20) satisfy the first two
properties of a median pair. These pairs are(a, be) = (13,8) and (a, b,) =(13,19). The
procedure thus returns (4, 6) as the indices of the median pair. [
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Analysis. Steps 1 and 3 require constant time. Each iteration o step 2
reduces the smaller of the two sequences by half. For constants ¢, and ¢, procedure
TWO-SEQUENCE MEDIAN thus requires ¢, T c,log(min{r,s}) time, which is
O(log n) in the worst case.

3.5.2 Fast Merging on the EREW Model

We now make use of procedure TWO-SEQUENCE MEDIAN to construct a parallel
merging algorithm for the EREW model. The algorithm, presented in what followsas
procedure EREW MERGE, has the following properties:

1. It requires a number of processors that issublinear in the size of the input and
adapts to the actual number of processors available on the EREW computer.

2. Its running time is small and varies inversely with the number of processors
used.

3. Itscost is optimal.

Given two sorted sequences A={a,, a,...,a,) and B={b;, b,,...,b), the
algorithm assumes theexistenceof N processors Py, P,, ..., P, where N isapower of
2and 1< N <r*s It merges A and B into a sorted sequence C = {€1,Cas v s Crys)
in two stages as follows:

Stage 1. Each o the two sequences A and B is partitioned into N (possibly
empty) subsequences A,, A,, ..., Ay and By, B,,..., B such that

(i) 14,1 F1Bil = (r + s)/N for 1<i <N and
(i) al elementsin 4;.B; are smaller than or equal to all elementsin 4,, ,.B;,,
for 1<i<N.

Stage 22 All pairs 4; and B;, 1 < i < N, are merged simultaneously and placed
in C.

The first stage can be implemented efficiently with the help of procedure TWO-
SEQUENCE MEDIAN. Stage 2 is carried out using procedure SEQUENTIAL
MERGE. In the following procedure A[i,j] is used to denote the subsegquence
{ai, a4 q,...,a;} of Aif i< j; otherwise A[i,]] is empty. We define B[j, j] similarly.

procedure EREW MERGE (A, B, C)

Step 1. (1.1) Processor P, obtains the quadruple (1, r, 1, 9)
(1.2) for j=1tolog N do
fori=1to2"! doin parald
Processor P, having recaived the quadruple(e, £, g, h)
(1.2.1) { Finds the median pair of two sequences)
TWO-SEQUENCE MEDIAN (A[e, 11, B{g, k1, X, ¥)
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(1.2.2) { Computes four pointers p,, p,, q,, and g, as follows}
if g isthe median

then (i) p, «x
(i) gy «xt1
(i) if by< a then(a) p,« y
(b) gy +1
dse(@) p,«y -1
(b) g2y
end if

else () p, <y
(i) g, <y T1
(i) if & < b, then(a) p, « X

() g =x+1
else(a) pye—x—1
(b) g, < x

end if
end if
(123) Communicates the quadruple (e, Py, g, P2) to Py,
(124) Communicates the quadruple(q;, f, 42, h) to Py;
end for
end for.

Step2 fori=1to N doin parallel
Processor P; having received the quadruple (a, b, ¢, d)
@D welt(i—-1xtsyN
(2.2) z < min{i(r T s)N, r T 9}
(23) SEQUENTIAL MERGE (A[aq, b, Blc, d], C[w, z])
endfor. [

It should be clear that at any time during the execution of the procedure the
subsequences on which processors are working are all disjoint. Hence, no concurrent-
read operation isever needed.

Example 35

LetA ={10,11,12,13,14,15,16,17,18}, B={3,4,5,6,7,8,19,20,21,22},and N =4

In step 1.1 processor P, receives(1, 9, 1, 10). During thefirst iteration of step 1.2
processor P, determinestheindicesof the median pair of A and B, namely, (4, 6). It keeps
(1,4, 1, 6) and communicates(s, 9, 7, 10) to P,. During the second iteration, P, computes
the indices of the median pair of A[1,4] = {10,11,12, 13} and B[1,6] = {3,4,5,6,7, 8},
namely, 1 and 5. Simultaneously, P, doesthe samewith A[5,9] = {14, 15, 16, 17, 18) and
B[7,10] = {19,20,21,22} and obtains 9 and 7. Processor P, keeps (1,0,1,5) and
communicates (1,4,6,6) to P,. Similarly, P, communicates (5,9,7,6) to P; and
(10,9, 7, 10) to P.

In step 2, processors P, to P, simultaneously create C[ 1, 19] as follows. Having
last received (1,0, 1, 5), P, computesw = 1 and z = 5 and copies B[1,5] = {3,4,5,6.7)}
into C[1, 5]. Smilarly, P,, havinglast received (1, 4, 6, 6), computesw = 6and z = 10and
merges A[1, 4] and B[6, 6] to obtain C{6, 10] = {8, 10, 11, 12, 13). Processor P3,
having last received (5, 9, 7, 6), computes w=11 and z=15 and copies
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A[5,9] = {14,15,16,17,18} into C[11, 15]. Finally P, having last received (10,9, 7, 10},
computes w = 16 and z = 19 and copies B{7, 10] = {19, 20,21, 22} into C[16,19]. O

Analysis. In order to analyze the time requirements of procedure EREW
MERGE, note that in step 1.1 processor P, reads from memory in constant time.
Duringthejth iteration of step 1.2, each processor involved hasto find the indices of
the median pair of (r +s)/2/~! elements. This is done using procedure TWO-
SEQUENCE MEDIAN in O(log[(r + s)/2¢~']) time, which is O(log(r T 9). The two
other operations in step 1.2 take constant time as they involve communications
among processors through theshared memory. Sincetherearelog N iterations of step
1.2, step 1 is completed in O(log N x log(r T 9)) time.

In step 2 each processor merges at most (r + s)/N elements. Thisisdone using
procedureSEQUENTIAL MERGEin O((r * s)/N) time. Together, steps 1 and 2 take
O((r + s)/N T 1ogN x log(r T 9) time. In the worst case, when r = s = n, the time
required by procedure EREW MERGE can be expressed as

t(2n) = O(n/N + log®n),

yielding a cost of ¢(2n) = O(n + Nlog?n). In view of the Q(n) lower bound on the
number of operations required to merge, this cost is optimal when N < n/log?n.

3.6 PROBLEMS

31 The odd-even merging network described in section 3.2 is just one example from a wide
class of merging networks. Show that, in general, any (r, s)}-merging network built o
comparators must require {log(r + )) time in order to completely merge two sorted
sequences of length r and s, respectively.

32 Show that, in general, any (r,s)}-merging network must require (slogr) comparators
whenr <s.

33 Usetheresultsin problems 31 and 32 to draw conclusionsabout the running time and
number o comparators needed by the (n, n) odd-even merging network of section 3.2,

34 The odd-even merging network described in section 3.2 requires the two input sequences
to be of equal length n. Modify that network so it becomes an (r, s)-merging network,
where r is not necessarily equal to s.

35 The sequence of comparisons in the odd-even merging network can be viewed as a
parallel algorithm. Describean implementation of that algorithm on an SIM D computer
where the processorsare connected to form alinear array. The two input sequencesto be
merged initially occupy processors P, to P, and P,,, to P, respectively. When the
agorithm terminates, P, should contain the ith smallest eement o the output segquence.

36 Repeat problem 35 for an m x m mesh-connected SIMD computer. Here the two
sequencesto be merged areinitialy horizontally adjacent, that is, one sequence occupies
the upper part of the mesh and the second the lower part, as shown in Fig. 3.8(a). The
output should be returned, asin Fig. 3.8(b), that is, in row-magjor order: The ith element
residesin row j and column k, where i =jm * k + 1 Note that for smplicity, only the
processors and their contents are shown in the figure, whereas the communications links
have been omitted.
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Fipe38 Maegingtwo horizonta sequenceson mesh-connected SIMD computer.

Repeat problem 3.6 for the case where the two input sequences are initially vertically
adjacent, that is, one sequence occupies the left part of the mesh and the second the right
part, as shown in Fig. 39. The result of the merge should appear asin Fig. 3.8(b).

A sequence{a, a, ...,a,,} issad to be bitonicif either

(i) thereisan integer 1 < j < 2n such that

QLA KaAG2a, 2 24,
or

(ii) the sequence does not initially satisfy condition (i) but can be shifted cyclically until
condition (i) is satisfied.

For example, {2, 5,8, 7, 6, 4, 3, 1} isa bitonic sequenceasit satisfiescondition (i).Similarly,
thesequence {2, 1, 3,5, 6, 7, 8, 4}, which does not satisfy condition (i), isalso bitonic asit
can be shifted cyclically to obtain {1, 3,5, 6, 7, 8, 4, 2}. Let {a,,4a,,...,a,} bea bitonic
sequenceand let d; = min{a;, a,,;} and e; = max{a;, a,} for 1 <i < n Show that

(@ {d,d;,...,d,} and {ey, e,,...,e,} are each bitonic and

(b) max{d,, d,...,d,} < min{e,, e,,...,¢e,}.

Two sequences A ={a,, a,,. ..,a} and B=(a,,, a,, -...&,} aregiven that when
concatenated form a bitonic sequence{ a,, &, ...,a,}. Use the two properties of bitonic
sequencesderived in problem 3.8 to design an (n, n)-merging network for merging A and B.

10|12 ] 8 | 11

15 116 | 13 | 14
Figure 29 Meging two verticd se-
[ I ] quences on  mesh-connected  SIMD

SEQUENCE1  SEQUENCE 2 computer.
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Analyze the running time and number of comparators required. How does your network
compare with odd—even merging in those respects?

Isit necessary for the bitonic merging network in problem 3.9 that the two input sequences
be of equal length?

The sequence of comparisonsin the bitonic merging network can be viewed as a parallel

algorithm. Repeat problem 35 for this algorithm.

Repeat problem 3.6 for the bitonic merging algorithm.

Repeat problem 3.7 for the bitonic merging algorithm.

Design an algorithm for merging on a tree-connected SIMD computer. The two input

sequences to be merged, of length r and s, respectively, areinitially distributed among the

leaves of the tree. Consider the two following situations:

(i) The tree has at least r + s leaves; initially leaves 1,...,r store the first sequence and
leavesr +1,...,r + 5 store the second sequence, one element per lesf.

(i) The tree has fewer than r + s leaves; initially, each leaf stores a subsequence of the
input.

Analyze the running time and cost of your algorithm.

The running time analysis in problem 3.14 probably indicates that merging on the tree is

no faster than procedure SEQUENTIAL MERGE. Show how merging on the tree can be

more appealing than sequential merging when several pairs of sequences are queued for

merging.

Consider the following variant of a tree-connected SIMD computer. In addition to the

edges of the tree, two-way links connect processors at the same level (into a linear array),

asshown in Fig. 3.10 for a four-leaf tree computer. Assume that such a parallel computer,

known as a pyramid, has n processors at the base storing two sorted sequences of total

length n, one element per processor. Show that €(n/log n) is a lower bound on the time

required for merging on the pyramid.

Develop a parallel algorithm for merging two sequences of total length n on a pyramid
with n base processors. Analyze the running time of your algorithm.

APEX

BASE

Figure 310 Processor pyramid.
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Procedure CREW MERGE assumesthat N, the number of processorsavailableto merge
two sequences of length r and s, respectively, is smaller than or equal to r whenr <s
Modify the procedure so it can handle thecasewhenr < N < s

Modify procedure CREW MERGE to use N > s > r processors. Analyze the running
time and cost of the modified procedure.

Show that procedure CREW MERGE can be simulated on an EREW computer in
O((n/N) * log?n) time if away can befound to distinguish between simpleread operations
(each processor needs to gain access to a different memory location) and multiple-read
operations.

Establish the correctness of procedure TWO-SEQUENCE MEDIAN.

Modify procedure TWO-SEQUENCE MEDIAN so that given two sequencesA and B of
length r and s, respectively, and an integer 1< k <r +s, it returns the kth smallest
element of A.B. Show that the running time of the new procedure is the same as that of
procedure TWO-SEQUENCE MEDIAN.

Establish the correctness of procedure EREW MERGE.

Procedure EREW MERGE assumes that N, the number of processors available, is a
power o 2. Can you modify the procedure for the case where N is not a power o 2?
Can the range of cost optimality of procedure EREW MERGE, namely, N < n/log®n, be
expanded to, say, N < n/flogn?

Can procedure EREW MERGE be modified (or a totally new agorithm for the EREW
model be developed) to match the O((n/N) * log n) running time of procedure CREW
MERGE?

Using the results in problems 1.6 and 1.10, show that an agorithm for an N-processor
EREW SM SIMD computer requiring O(N) locations of shared memory and time T can
be simulated on a cube-connected network with the same number of processorsin time
T X O(log?N).

Analyze the memory requirements of procedure EREW MERGE. Then, assuming that
N =r s, use the result in problem 3.27 to determine whether the procedure can be
simulated on a cube with N processorsin O(log*N) time.

Assumethat r * s processorsare available for merging two sequencesA and B of length
and s, respectively, into a sequence C. Now consider the following simpler variant of
procedure CREW MERGE.

fori=1tor*sdoin parallel
P, finds the ith smallestelement of A.B (using the procedurein problem 3.22) and placesit
in the ith position of C

end for.

Analyze the running time and cost of this procedure.

Adapt the procedure in problem 3.29for the case where N processorsare available, where
N < r *+s. Compare the running time and cost of the resulting procedure to those of
procedure CREW MERGE.

Develop a paralel merging algorithm for the CRCW model.

Show how each of the parallel merging algorithms studied in this chapter can lead to a
paralel sorting algorithm.
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333 Modify procedure MULTIPLE BROADCAST to obtain aformal statement of procedure
MULTIPLE STORE described in section 1.2.3.1. Provide a different version of your
procedure for each of the write conflict resolution policies mentioned in chapter 1

3.7 BIBLIOGRAPHICAL REMARKS

Merging networks are discussed in[Akl 1], [Batcher], [Hong], [Knuth], [Perl], [Tseng], and
[Yao]. The odd-even and bitonic merging networks were first proposed in [Batcher]. These
two networks are shown to be asymptotically the best possible merging networks with respect
to their running time (in [Hong]) and number of comparators needed (in [Yao]). Various
implementations of the odd—even and bitonic mergingalgorithms on one- and two-dimensional
arrays of processors are described in [Kumar], [Nassimi], and [Thompson].

Procedure CREW MERGE is based on ideas presented in [Shiloach]. A second parallel
merging procedure for the CREW model when N = s = r is described in [Shiloach] whose
running time is O((log r)/log(N/s)). Ideas similar to those in [Shiloach] are presented in
[Barlow]. These resultsare improved in [Borodin] and [Kruskal]. It is shown in [Borodin]
how r T s processors can merge two sequences of length r and s, respectively, where r < s in
O(loglogr) time. An adaptive algorithm is described in [Kruskal] that uses N<r+s
processors and runs in time O((r T s)/N + log[(r T s)/N]1*+ loglog N). When r =5 = n and
N = n/log log n, thislast algorithm runs in O(log log n) time and is therefore cost optimal.

The concept of multiple broadcasting is attributed to [Eckstein]. Let A bean algorithm
designedto run in time t and spaceson an N-processor CREW SM SIMD computer. As shown
in section 34, procedure MULTIPLE BROADCAST allows A to be simulated on an N-
processor EREW SM SIMD computer in time O(t x log N) and space O(s x p). In [Vishkin]
and[Wah] variants of this procedure are given that performthe simulation using only O(s + p)
space. Procedures TWO-SEQUENCE MEDIAN and EREW MERGE first appeared in
[Akl 2]. Algorithms for merging on a tree and a pyramid are given in [Akl 1] and [Stout],
respectively.

Three parallel merging algorithms are described in [Valiant] to run on the comparison
mode of computation where only comparisons among input elementsare counted in analyzing
the running time of an algorithm. The first mergestwolists of length rand s, respectively, where
r < s, using (rs)'/2 processors in O(loglog r) time. The second uses c(rs)!/? processors, where
c = 2,and runsin O(loglogr — loglogc) time. The third uses N processors, where N < r, and
runs in O((r t s)/N + log[(rs log N)/N]). A fourth agorithm for the comparison mode is
describedin [Gavril] that usesN < r processorsand runsin O{logr + #/N T (#/N)log s/r) time.
An Q(log log n) lower bound on the time required to merge two segquences of length neach on
the comparison model isderived in[Borodin]. Essentially the same lower bound is obtained in
[Haggkvidt]. It isinteresting to note that thislower bound is matched by the CREW algorithm
in [Kruskal] mentioned earlier where al operations (not just comparisons) are counted.
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Sorting

4.1 INTRODUCTION

In the previous two chapters we described parallel algorithms for two comparison
problems: selection and merging. We now turn our attention to a third such problem:
sorting. Among all computational tasks studied by computer scientists over the past
forty years, sorting appears to have received the most attention. Entire books have
been devoted to the subject. And although the problem and its many solutions seem to
be quite well understood, hardly a month goes by without a new article appearing in a
technical journal that describes yet another facet of sorting. There are two reasons for
thisinterest. The problem isimportant to practitioners, as sorting datais at the heart
of many computations. It also hasarich theory: Thedesign and analysis of'algorithms
isan important area of computer science today thanks mainly to the early work on
sorting.

The problem isdefined asfollows. Wearegiven asequence S = {s;,53,...,8,} o
nitemson whichalinear order < isdefined. Theelementsof Sareinitially in random
order. The purpose of sorting is to arrange the elements of S into a new sequence
§' = {s1,54,...,5,} such that sj <s;., fori=1,2,...,n— 1 We saw in chapter 1
(example 1.10) that any algorithm for sorting must require Q(»n log n) operationsin the
worst case. As we did in the previous two chapters, we shall assume henceforth,
without loss of generality, that the elements of Sare numbers (of arbitrary size) to be
arranged in nondecreasing order.

Numerous algorithms exist for sorting on a sequential computational model.
One such agorithm is given in what follows as the recursive procedure
QUICKSORT. The notation a«< b means that the variables a and b exchange their
values.

procedure QUICKSORT (S)

if IS|=2and s, <s,
then s, < s,
else if |S] > 2 then
(2) { Determine m, the median element of 5}
SEQUENTIAL SELECT (S, 1S1/27)
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(2) {Split S into two subsequences S, and S,}
(2.1) Sy «{s,: s; <m} and [S,| = [151/2]
(2.2) 83+ {si:s; 2 m} and [S,] = [(S1/2]
(3) QUICKSORT(S,)
(4) QUICKSORT(S,)
end if
endif. O

At each level of the recursion, procedure QUICKSORT finds the median of a
sequence S and then splits S into two subsegquences S, and S, of elementssmaller than
or equal to and larger than or equal to the median, respectively. The algorithm is now
applied recursively to each of S, and S,. Thiscontinues until S consists of either one
or two elements, in which case recursion is no longer needed. We aso insist that
IS:1=T181/271 and {S,| =1|S|/2] to ensure that the recursive cals to procedure
QUICKSORT are on sequences smaller than S so that the procedureis guaranteed to
terminate when all elements of S are equal. Thisis done by placing all elements of S
smaller than min S,; if |S;| < [1S]/2], then elements equal to m are added to S, until
1S,1 =TISI/21. From chapter 2 we know that procedure SEQUENTIAL SELECT
runsin time linear in the size of the input. Similarly, creating S, and S, requires one
pass through S, which is also linear.

For some constant ¢, we can express the running time of procedure
QUICKSORT as

t(n) = cn + 2t(n/2)
=0(nlog n),
which is optimal.

Example 4.1
LetS ={6,59,2,4,3,51 7,5, 8}. Thefirst call to procedureQUI CKSORT produces 5
as the median element of S, and hence S, = {2,4,3,1,5,5} and S, = {6,9,7,8, 5}. Note
that §; =41 =6and S, = 4| = 5. Arecursivecall toQUI CKSORT with §; asinput
produces the two subsequences {2, 1,3} and {4, 5, 5}. The second call with S, as input
produces {6,5,7} and {9,8}. Further recursive cals complete the sorting of these
sequences. []

Because of the importance o sorting, it was natural for researchers to also
develop several algorithms for sorting on parallel computers. In thischapter we study
a number of such algorithms for various computational models. Note that, in view of
the R(nlog n) operations required in the worst case to sort sequentially, no parallel
sorting algorithm can have a cost inferior to O(nlog n). When its cost isO(nlogn), a
parallel sorting algorithm is of course cost optimal. Similarly, a lower bound on the
time required to sort using N processors operating in parallel is Q((nlogn)/N) for
N < nlogn.

We begin in section 4.2 by describing a special-purpose parallel architecture for
sorting. The architecture is a sorting network based on the odd-even merging
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algorithm studied in chapter 3. In section 4.3 a parallel sorting algorithm is presented
for an SIMD computer where the processors are connected to form a linear array.
Sections 4.4-4.6 are devoted to the shared-memory SIMD model.

4.2 A NETWORK FOR SORTING

Recall how an (r, s}-merging network was constructed in section 3.2 for merging two
sorted sequences. It israther straightforward to use a collection of merging networks
to build a sorting network for the sequence S = {sy, 55, - . . , S»}, Where nisa power of 2
Theideaisthefollowing. In afirst stage, a rank of n/2 comparators is used to create
n/2 sorted sequenceseach of length 2 In a second stage, pairs of these are now merged
into sorted sequences of length 4 using a rank of (2, 2)-merging networks. Again,in a
third stage, pairs of sequences of length 4 are merged using (4, 4)-merging networks
into sequences of length 8. The process continues until two sequences of length r/2
each are merged by an (n/2, n/2)-merging network to produce a single sorted sequence
of length n. The resulting architecture is known as an odd—even sorting network and is
illustrated in Fig. 4.1for S= {8,4,7,2, 1,5, 6, 3}. Note that, asin the case of merging,
the odd-even sorting network is oblivious of its input.

Analysis. Aswe did for the merging network, we shall analyze the running
time, number of comparators, and cost of the odd—evensorting network. Since thesize
of the merged sequences doubles after every stage, there arelog n stages in all.

(i) Running Time. Denote by s(2) the time required in the ith stage to merge
two sorted sequences of 2/~ elements each. From section 3.2 we have the recurrence

s(2)=1 fori=1,
s2)=s@2"H+1 fori>1,
whose solution is s(2f) = i. Therefore, the time required by an odd-even sorting

network to sort a sequence of length nis

t(n) = 'zg s(2) = O(log?n).

=1

Note that this is significantly faster than the (optimal) sequential running time of
O(nlogn) achieved by procedure QUICKSORT.

(ii) Number of Processors. Denote by g(2) the number of comparators
required in the ith stage to merge two sorted sequences of 2~ elements each. From
section 3.2 we have the recurrence

q(2)=1 fori=1,
g(2) =292 H+ 2"t -1 fori>1,

whose solution is g(2%) = (i — 1)2"~! + 1 Therefore, the number of comparators
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needed by an odd-even sorting network to sort a sequence of length nis

logn

pin) = Y, 20 =ig(2)

i=1

= O(n log?n).

(i) cost. Since t(n) = O(log®n) and p(n) = O(n log®n), the total number of
comparisons performed by an odd—even sorting network, that is, the network's cost, is

c(n) = p(n) x t(n)
= O(nlog*n).

Our sorting network istherefore not cost optimal asit performs more operations than
the O(n log n) sufficient to sort sequentially.

Sincethe odd—even sorting network is based on the odd—even merging one, the
remarks made in section 3.2 apply here as well. In particular:

(i) The network isextremely fast. It can sort a sequence of length 22° within, on the
order of, (20)*> time units. This is to be contrasted with the time required by
procedure QUICK SORT, which would be in excess o 20 million time units.

(i) The number of comparators istoo high. Again for n = 22°, the network would
need on the order of 400 million comparators.

(iii) The architectureis highly irregular and the wireslinking the comparators have
lengths that vary with n.

Wetherefore reach the same conclusion asfor the merging network of section 3.2: The
odd-even sorting network is impractical for large input sequences.

4.3 SORTING ON A LINEAR ARRAY

In this section we describe a parallel sorting algorithm for an SIM D computer where
the processors are connected to form a linear array as depicted in Fig. 1.6. The
algorithm usesnprocessors P,, P,,..., P, tosort thesequencesS = {5, 5, ..., 5,}. At
any time during the execution o the algorithm, processor P; holds one element of the
input sequence; we denote this element by x; for all 1<i < n Initidly x; =s;. It is
required that, upon termination, x; be the ith element of the sorted sequence. The
algorithm consists of two steps that are performed repeatedly. In thefirst step, all odd-
numbered processors P; obtain x;,, from P;+, If x;>x;,,, then P, and P;,,
exchange the elements they held at the beginning of this step. In the second step, all
even-numbered processors perform the same operations as did the odd-numbered
onesin thefirst step. After [n/2] repetitions of these two stepsin this order, no further
exchanges of elements can take place. Hence the algorithm terminates with x; < x;
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for dl 1 <i<n- 1. The algorithm is given in what follows as procedure ODD-
EVEN TRANSPOSITION.

procedure ODD-EVEN TRANSPOSITION (S)
for j = 1to[n/27 do
(1) fori=1,3,...,2[n/2] — 1 doin parallel
ifx; > x4
then x; & x;,,
end if
end for
(2)fori=2,4,...,2|(n — 121 do in paralld
if x; > x4
then x; & x;, ¢
end if
end for
end for. O

Example 4.2
LeS=1{6,5,9,2,4,3,5,1,7 5,8} Thecontentsd thelinear array for thisinput during
the execution d procedure ODD-EVEN TRANSPOSITION areillustrated in Hg. 4.2.
Note that although a sorted sequenceis produced after four iterations o steps 1 and 2,
two more (redundant)iterationsare performed, that is atotal of [4] as required by the
procedure's statement. [

Analysis. Each of steps1and 2 consists of one comparison and two routing
operations and hence requires constant time. These two steps are executed [n/2]
times. The running time of procedure ODD-EVEN TRANSPOSITION is therefore
t(n) = O(n). Since p(n) = n, the procedure's cost is given by c(n) = p(n) X t(n) = O(n?),
which is not optimal.

From this analysis, procedure ODD-EVEN TRANSPOSITION does not
appear to be too attractive. Indeed,

(i) with respect to procedure QUICK SORT, it achievesa speedup of O(log n)only,
(i) it uses a number of processors equal to the size of the input, which is
unreasonable, and
(iii) it is not cost optimal.

The only redeeming feature of procedure ODD-EVEN TRANSPOSITION
seemsto beitsextremesimplicity. Weare thereforetempted to salvageits basicideain
order to obtain a new algorithm with optimal cost. There are two obvious ways for
doing this: either (1) reduce the running time or (2)reduce the number of processors
used. The first approach is hopeless: The running time of procedure ODD-EVEN
TRANSPOSITION is the smallest possible achievable on a linear array with n
processors. To seethis, assume that the largest element in Sisinitially in P, and must
thereforemove n — 1 stepsacrossthelinear array beforesettlinginitsfinal position in
P.. This requires O(n) time.
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Figure 4.2 Sorting sequence of deven dements using procedure ODD-EVEN
TRANSPOSITION.

Now consider the second approach. If N processors, where N < n, are available,
then they can simulate the algorithm in n x t(n)/N time. The cost remainsn X t(n),
which as we know is not optimal. A more subtle simulation, however, alows us to
achieve cost optimality. Assumethat each of the N processorsin thelinear array holds
a subsequence of Sof length n/N. (It may be necessary to add some dummy elements
to Sif nis not a multiple of N.) In the new algorithm, the comparison-exchange
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operations o procedure ODD-EVEN TRANSPOSITION are now replaced with
merge-split operations on subsequences. Let S; denote the subsegquence held by
processor P;. Initially, the S; are random subsequences of S. In step 1, each P; sorts §;
using procedure QUICKSORT. In step 2.1 each odd-numbered processor P; merges
the two subsequences S; and S;., into a sorted sequence S; = {s7,5%...,85,n}- It
retains the first haf of S/ and assignsto its neighbor P, . ; the second half. Step 2.2 is
identical to 2.1 except that it is performed by all even-numbered processors. Steps 2.1
and 22 are repeated aternately. After [N/2] iterations no further exchange o
elements can take place between two processors. The algorithm is given in what
follows as procedure MERGE SPLIT. When it terminates, the sequence S = S,,
S, ...,Sy issorted.

procedure MERGE SPLIT (S)

Step 1. for i=1toN doin parald
QUICKSORT (S;)
end for.

Step2: for j=1to[N/2] do
(21) fori=1,3,...,2|N/2] — 1doin parald
(i) SEQUENTIAL MERGE (S;, S+, )

(i) S;+ {sy, $5,... ,S;./N}
(i) S;+, « {S(Inmﬁ 1 Sty 42000 sZn/N}
end for

(2.2)fori=2,4,...,2I{N — 1)/2]} do in paralld
(i) SEQUENTIAL MERGE (S;, S;+ 4, S

(”) Si A\ {s,l’ S,Zs e ,S;/N}
(lll) Si+ 19 {S(/n/N)"' 13 s(’n/N)+25 - S’Zn/N}
end for
end for. [

Example 4.3
Let S={8, 2,5, 10, 1,7, 3, 12,6, 11, 4,9) and N = 4. The contents of the various
processorsduring the execution of procedure MERGE SPLIT for thisinput isillustrated
inFig.43. O

Analysis. Step 1 requires O((n/N)log(n/N)) steps. Transferring S;,, to P,
merging by SEQUENTIAL MERGE, and returning S, to P;,, al require O(n/N)
time. The total running time of procedure MERGE SPLIT is therefore

t(n) = O((n/N)log(n/N)) + [N/2] x O(n/N)
= 0((n log n)/N) T O(n),
and its cost is
c(m) = O(nlog n) + O(nN),

which is optimal when N < logn.
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P, Py Py P4

INITIALLY {8, 2, 5} (1017) {3, 12, 6} {11, 4,9
AFTER STEP

1 {2, 5, 8) {1,7,10} {3. 6,12} —I {4, 9, 11}
(2.1) {1, 2, 5} {7. 8, 10} {3.4,6} {9, 11,12}
(2.2) {1, 2, 5} {3, 4, 6} {7, 8, 10} {9, 11,12}
(2.1) {1, 2,3} {4, 5, 6} {7. 8,9 {10, 11, 12}
(2.2) {1.2, 38} {4, 5, 6} {7, 8,9} {10, 11, 12}

Figure43 Sorting sequenceof twelve elementsusing procedure MERGE SPILIT.

4.4 SORTING ON THE CRCW MODEL

Itistimeto turn our attention to the shared-memory SI M D model. I n the present and
the next two sections we describe parallel algorithms for sorting on the various
incarnations of this model. We begin with the most powerful submodel, the CRCW
SM SIM D computer. We then proceed to the weaker CREW model (section 4.5), and
finally we study algorithms for the weakest shared-memory computer, namely, the
EREW model (section 4.6).

Whenever an algorithm isto be designed for the CRCW model of computation,
one must specify how write conflicts, that is, multiple attempts to write into the same
memory location, can be resolved. For the purposes of the sorting algorithm to be
described, we shall assume that writeconflictsare created whenever several processors
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attempt to write potentially different integers into the same address. The conflict is
resolved by storing the sum of these integers in that address.

Assume that n? processors are available on such a CRCW computer to sort the
sequence S= {sy,5,,...,5,}. Thesorting algorithm to be used is based on the idea of
sorting by enumeration: The position of each element s; of Sin the sorted sequence is
determined by computing c;, the number of elements smaller than it. If two elements s;
and s; areequal, then s; istaken to be the larger of the two if i > j; otherwise s; is the
larger. Once all the ¢; have been computed, s, is placed in position 1 + ¢, of the sorted
sequence. T o help visualize the algorithm, we assume that the processorsare arranged
into n rows of n elements each and are numbered as shown in Fig. 4.4. The shared
memory contains two arrays: Theinput sequenceisstored in array S while the counts
¢; are stored in array C. The sorted sequenceis returned in array S. The ith row of
processorsis*in charge” of element s;: Processors P(i, 1), P(i, 2).. .., P(i, n) compute ¢;
and stores; in position 1 + ¢, of S. The algorithm isgiven as procedure CRCW SORT:

procedure CRCW SORT (S)

Stepl: for i =1ton doin paralld
for j = 1tondoin paralld
if (s;>s)a(s;=s;andi>j)
then P(i, j) writes 1 in ¢;
else PG, j) writes0 in ¢;
end if
__end for
end for.
Step 2 for i=1ton doin paralld
PG, 1) storesss; in position 1+ ¢, o S
end for. [J
Example4.4
Let S = {5,2, 4,5). Thetwo dements of S that each of the 16 processors comparesand
the contentsd arrays S and C after each step of procedure CRCW SORT are shown in
Fig.45 O

Analysis. Each of steps 1 and 2 consists of an operation requiring constant
time. Therefore t(n) = O(1). Since p(n) = n?, the cost of procedure CRCW SORT is

c(n) = O(n?),

which is not optimal.
We have managed to sort in constant time on an extremely powerful model that

1. alows concurrent-read operations; that is, each input element s; is read
simultaneously by all processorsin row i and all processorsin column i;
2 alows concurrent-write operations; that is,
(i) all processorsin a given row are allowed to write simultaneously into the
same memory location and
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S 8, | s, s,
SHARED
MEMORY
C ¢ | ¢ c,
P(1:1) P(1.2) * . ) P(1,I'\)
P(211j P(2)2} . . . P(2,n)
P(n,1) P(n,2) . . . P(n,n)

Figure4.4 Processor and memory organization for sortingon CRCW SM SIM D model.

(ii) the write conflict resolution processis itsdf very powerful —al numbers to
be stored in a memory location are added and stored in constant time;
and
3 usssavey large number o processors; that is, the number of processorsgrows
quadratically with the size o the input.

For these reasons, particularly the last one, the algorithm is most likely to be of no
great practical vaue. Nevertheless, procedure CRCW SORT isinterestingin its own
right: It demonstrates how sorting can be accomplished in constant time on a model
that isnot only acceptabletheoretically, but has also been proposed for a number of
contemplated and existing parallel computers.
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P(1,1) P(1,2) P(1,3) P(1,4) C S
5,5 5,2 5, 4 5,5 2 2
P(2,1) P(2,2) P(2,3) P(2,4)
2,5 2,2 2,4 2,5 0 4
P(3,1) P(3.2) P(3,3) P(3,4)
4,5 4,2 4,4 4,5 1 5
P(4,1) P(4,2) P(4,3) P(4,4)
5,5 5,2 5,4 5,5 3 5
AFTER AFTER
STEP 1 STEP 2

Figure 45 Sorting sequence of four elements using procedure CRCW SORT

4.5 SORTING ON THE CREW MODEL

In this section we attempt to deal with two of the objections raised with regards to
procedure CRCW SORT: its excessive use of processors and its tolerance of write
conflicts. Our purposeistodesign an algorithm that isfree of write conflictsand usesa
reasonable number of processors. In addition, we shall require the algorithm to also
satisfy our usual desired properties for shared-memory SIMD algorithms. Thus the
algorithm should have

(i) asublinear and adaptive number of processors,
(i) a running time that is small and adaptive, and
(iii) acost that is optimal.

In sequential computation, a very efficient approach to sorting is based on the
idea of merging successively longer sequences of sorted elements. This approach is
even more attractivein parallel computation, and we have already invoked it twicein
this chapter in sections 4.2 and 4.3. Once again we shall use a merging algorithm in
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order to sort. Procedure CREW M ERGE developed in chapter 3 will serveas a basis
for the CREW sorting algorithm of this section. Theidea is quite simple. Assume that
a CREW SM SIMD computer with N processors Py, P, ..., Py isto be used to sort
the sequence S={s,, s,,...,s,}, where N < n We begin by distributing the elements
of Sevenly among the N processors. Each processor sortsits alocated subsequence
sequentially using procedure QUICKSORT. The N sorted subsequences are now
merged pairwise, simultaneously, using procedure CREW M ERGE for each pair. The
resulting subsequences are again merged pairwise and the process continues until one
sorted sequence of length nis obtained.

The algorithm is given in what follows as procedure CREW SORT. In it we
denote theinitial subsequence of S allocated to processor P; by S;. Subsequently, S is
used to denote a subsequence obtained by merging two subsequences and P the set of
processors that performed the merge.

procedure CREW SORT (S)

Step 1 fori= 1to N doin paralld
Processor P;
(1.1) reeds a digtinct subsequence §; o S d dzen/N
(1.2) QUICKSORT (S,
(1.3) Sf < S,
(L4) Pf« {P;}
end for.

Sep2 (2D u<1l
(2.2)ve N
(2.3)whilev > 1 do
(2.3.1)for m= 1to|v/2} doin paralld
(i) Put' < Pip_y U P3y
(ii) The processorsin the st P4*! perform
CREW MERGE (S%,,_,, S, $**1)
end for
(2.3.2)if v isodd then () Pg)« P
(i) Sty S%
and if
(233)u—utt
(2.34) v [v/2]
end while [

Analysis. Thedominating operation in step 1 is the call to QUICKSORT,
which requires O((n/N)log(n/N)) time. During each iteration of step 2.3, [ v/2] pairs of
subsequences with n/lv/2] elements per pair are to be merged simultaneously using
N/lv/2] processors per par. Procedure CREW MERGE thus requires
O([(n/Lv/2))/(N/Lv/2])] + log(n/|v/2))), that is, O((n/N) + log n) time. Sincestep 2.3 is
iterated |log NJ times, the total running time of procedure CREW SORT is

t(n) = O((n/N)log(n/N)) T O((n/N)log N + log nlog N)
= O((n/N)log n T log?n).
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Since p(n) = N, the procedure's cost is given by
¢(n) = On log n+ N log?n),
which is optimal for N < n/log n.

Example 45
Let S=1{2,8,5,10, 15, 1, 12, 6, 14, 3, 11, 7, 9, 4, 13, 16) and N = 4. During step 1,
processors P,, P,, P, and P, receive the subsequences S, ={2, 8,5, 10},
§,=(15,1,12,6}, S, = (14,3, 11,7}, and S, = (9,4, 13, 16}, respectively, which they
sort locally. At theend of step 1, 81 = {2,5,8,10}, §3 = {1,6,12,15}, S} = {3,7, 11, 14},
S}t:{4’9’13’16}’P% :{Pl}’P%:{PZ}’P;:{Pﬁ’and Pblt:{P4}'

During the firgt iteration of step 2.3, the processorsin P3 = P} u P} = {P,, P,}
cooper ate to merge the elements of S} and S; to produce S; = {1,2,5,6, 8,10, 12, 15}.
Simultaneously, the processors in P2 = PiuP}={P;,P,} merge 3 and S} into
52=1{3,4,7,9, 11, 13 14, 16).

During the second iteration of step 2.3, the processors in P = PZuP;3 =
{P,, P,,P,, P,}cooperatetomergeSiand S%into S} = {1, 2,..., 16)and the procedure
terminates. []

4.6 SORTING ON THE EREW MODEL

Two of the criticisms expressed with regards to procedure CRCW SORT were
addressed by procedure CREW SORT, which adapts to the number of existing
processors and disallows multiple-write operations into the same memory location.
Still, procedure CREW SORT tolerates multiple-read operations. Our purposein this
section isto deal with thisthird difficulty. Three parallel algorithmsfor sorting on the
EREW model are described, each representing an improvement over its predecessor.
We assume throughout thissection that N processors P, P,,..., Py areavailable on
an EREW SM SIM D computer to sort thesequence S= {s;, s, . ..,s,}, whereN < n.

4.6.1 Simulating Procedure CREW SORT

The simplest way to remove read conflicts from procedure CREW SORT is to use
procedure MULTIPLE BROADCAST. Each attempt to read from memory now
takes O(log N) time. Simulating procedure CREW SORT on the EREW model
therefore requires

t(n) = O((n/N)log n t log nlog N) x O(log N)
= O([(n/N) *+ log NTlog nlog N)
time and has a cost of
c(n) = O((n T N log N)log nlog N),

which is not cost optimal.
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4.6.2 Sorting by Conflict-Free Merging

A more subtle way to avoid concurrent-read operations from the same memory
location in procedure CREW SORT is to remove the need for them. This can be
accomplished by replacing the call to produce CREW MERGE in step 2.3.1
with a cal to procedure EREW MERGE. This step therefore requires
O((n/N) * lognlog N). Since there are O(log N) iterations o this step, the overall
running time of the modified procedure, including step 1, is

t(n) = O((n/N)log(n/N)) T O((n/N)log N * log nlog?N)
= O([(n/N) T log>n}log n),
yielding a cost of
¢(n) = O((n T N log?n)log n).

Therefore the modified procedure is cost optimal when N < n/log®n. This range of
optimality is therefore narrower than the one enjoyed by procedure CREW SORT.

4.6.3 Sorting by Selection

Our analysis so far indicates that perhaps another approach should be used if the
performance of procedure CREW SORT isto be matched on the EREW model. We
now study one such approach. The idea is to adapt the sequential procedure
QUICKSORT to run on a parallel computer. We begin by noting that, since N < n,
we can write N = n! ™% where0 < x < L

Now, let m; be defined as the [i(n/2'”*)Jth smalest element of S for
1<i <2V — 1L Them,’s can be used to divide S into 2'/* subsequences of size n/2!/*
each. These subsequences, denoted by S;, S;,...,S;, S;41, Sjs2,-.., Sz, Where
j =241 stisfy thefollowing property: Every element of S; issmaller than or equal
to every element of S;,, for 1<i<2j— 1 This is illustrated in Fig. 46. The
subdivision process can now be applied recursively to each of the subsequences S;
until the entire sequence S is sorted in nondecreasing order.

This agorithm can be performed in paradlel by first invoking procedure
PARALLEL SELECT to determine the elements m; and then creating the sub-
sequences S;. The algorithm is applied in parallel to the subsequences Sy, S,,...,S;
using N/j processors per subsequence. The same is then done with the subsequences
S;+1>8j42,...,8;j. Notethat the number of processors used to sort each subsequence
of size n/24% namely, n* ~*/2M® -1 js exactly the number required for a proper
recursive application of the algorithm, that is, (n/2'/)! ~*,

Itisimportant, of course, that 21/ be an integer of finite Size: Thisensures that a
bound can be placed on the running time and that al the m; exist. Initialy, the N
available processors compute x from N = n! ~*, If x does not satisfy the conditions (i)
f1/x7 < 10 (say) and (ii) n > 2"/~ then the smallest real number larger than x an"* ~
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satisfying (i) and (ii) istaken asx. Let k = 2/, The algorithm is given as procedure
EREW SORT:

procedure EREW SORT (S)

if 1S| < k
then QUICK SORT (S)
ese(l) for i=1tok—1do
PARALLEL SELECT (S, [i|S|/k]) {Obtain m,)
end for
(2) S; < {seS:s< my}
(3)for i=2tok—1do
S, {seS:m_, <s<my}
end for
(4) Sy~ {seS:s=m_}
(5) for i = 1to k/2 do in parallel
EREW SORT (S))
end for
(6) for i = (k/2) T 1to k do in paralld
EREW SORT (S))
end for
endif. O

Note that in steps 2-4 the sequence S; is created using the method outlined in
chapter 2 in connection with procedure PARALLEL SELECT. Also in step 3, the
elements of Ssmaller than m; and larger than or equal tom;_, arefirst placed in §,;. If
IS;] < TiS|/k7, then elementsequal to m; are added to S; SO that either |S;| = [|S|/k] or
no element isleft to add to S;. Thisisreminiscent of what wedid with QUICK SORT.
Steps 2 and 4 are executed in a similar manner.

Example 4.6

Let S =1{5,9,12, 16,18,2,10,13,17,4,7, 18,18, 11, 3,17, 20, 19, 14,8,5, 17, 1, 11, 15, 10,
6} (i.e, n = 27)and let five processors P,, P,, P;, P,, Ps be available on an EREW SM
SIMD computer (i.e., N = 5). Thus5 = (27)! %, x ~ 0.5, and k = 2/"/*! = 4. The working
of procedure EREW SORT for thisinput isillustratedin Fig. 4.7. Duringstep 1, m, = 6,
m, = 11, and m, = 17 are computed. Thefour subsequencesS;, S,, S;, and S, arecreated
in steps 2-4 as shown in Fig. 4.7(b). In step 5 the procedure is applied recursively and
simultaneoudly to S, and S. Note that |S,] = |S,| = 7, and therefore 7' ~* is rounded
down to 2 (assuggested in chapter 2).1n other words two processorsare used tosort each
o the subsequencesS, and S, (thefifth processor remainingidle). For S,, processorsP,
and P, computem, =2, m, =4, and m; =5, and the four subsequences {1, 2}, {3, 4},
{5, 5}, and {6} are created each of whichisalready insorted order. For S,, processors P,
and P, computem, = 8, m, = 10,and m; = 11, and thefour subsequence; {7, 8}, {9, 10},
{10, 11}, and {11) are created each of whichisalready in sorted order. The sequence § at
theend d step 5isillustratedin Fig. 4.7(c). In step 6 the procedureis applied recursively
and simultaneously to §5 and S,. Again since|S;| =7 and |S,|=6,7'"*and 6!~ are
rounded down to 2 and two processorsare used to sort each o the two subsequencess,
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['s T1o]12]16] 18] 2 J10]1a]17] 4 | 7 [18] 18] 11] s[17]20 18] 14 8 ] 5 [17] 1 [11]15] 10]s |

@ INITIALLY

[sT2T4a]a]s]1Te]o]ro] 7[8]0]11[11]12] 16] 13]1a] 6 [17]17] 18] 18] 18]20]10] 17]
— S % ——— % —
(b) AFTER STEP (4)
[1T2Tafa]s]s]e]7]8]o]ro]to]11]11]12] 16]13]1a]15[ 17]17] 18] 18] 18] 20] 15] 17]

f—— 53 — S« —

(c) AFTER STEP (5)

[1T2]3]4]s]s]e]7]s]a]|r0]10]11]11]12{ 13]14]15]16]17]17] 17] 18] 18] 18] 10] 20]

(d) AFTER STEP (6)
Figure4.7 Sorting sequencedf twenty-seven elementsusing procedure EREW SORT.

and S,. For §;,m; = 13, m = 15,andm = 17 are computed, and thefour subsequences
{12,13}, {14,15}, {16, 17}, and {17} are created each d which is aready sorted. For 5,
m; =18 m =18, and m = 20 are computed, and the four subsequences {17, 18},
{18, 18}, {19,20}, and an empty subsequenceare created. The sequence S after step 5 is
shown in Fig. 4.7(d). [

Analysis. Thecall to QUICKSORT takes constant time. From the analysis

of procedure PARALLEL SELECT in chapter 2 we know that steps 1-4 require cn*
time units for some constant ¢ The running time of procedure EREW SORT is
therefore

t(n) = cn* + 2t(n/k)
= O(n*log n).

Since p(n) = n' ~*, the procedure's cost is given by

c(n) = p(n) x t(n) = O(nlog n),

which is optimal. Note, however, that since n'~* < n/logn, cost optimality is
restricted to the range N < n/log n.

(i)

Procedure EREW SORT therefore matches CREW SORT in performance:

It uses a number of processors N that issublinear in the size of the input nand
adaptsto it,
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(i) it has a running time that is small and variesinversdy with N, and
@iii) itscost is optimal for N < n/log n

Procedure EREW SORT hasthe added advantage, o course, d running on a weaker
model of computation that does not dlow multiple-read operations from the same
memory location.

It isalsointerestingto observe that procedure EREW SORT isa" mirror image'
of procedure CREW SORT in thefollowingway. Both algorithms can be modeled in
theory by a binary tree. In procedure CREW SORT, subsequences are input at the
leaves, one subsequence per leaf, and sorted locally; they are then merged pairwise by
parent nodes until the output is produced at the root. By contrast, in procedure
EREW SORT, the sequence to be sorted isinput at the root and then split into two
independent subsequences {S;,S,,...,S;} and {S;,,S;+2,...,52;}; splitting then
continues at each node until each leaf receivesa subsequencethat, oncelocally sorted,
is produced as output.

47 PROBLEMS

41 Use the (n, n)-merging network defined in problem 39 to obtain a network for sorting
arbitrary (i.e., not necessarily bitonic) input sequences. Analyze the running time and
number of processors used by this network and compare these with the corresponding
quantities for the network in section 4.2.

42 Consider thefollowing parallel architecture consisting of n? processors placed in a square
array with n rows and ncolumns. The processors in each row areinterconnected to form a
binary tree. The processors in each column are interconnected similarly. The tree
interconnections are the only links among the processors. Show that this architecture,
known as the mesh d trees, can sort a sequence of n elements in O(log n) time.

43, The odd-even sorting network of section 4.2 uses O(nlog?n) processors to sort asequence
4 of length nin O(log?n) time. For some applications, this may be too slow. On the other
hand, the architecture in problem 4.2 sorts in O(log n) time using n? processors. Again,
when n is large, this number of processors is prohibitive. Can you design a network that
combines the features of these two algorithms, that is, one that uses O(nlog?n) processors

and sorts in O(log n) time?

44 1t may beargued that the number of processors used in problem 4.3, namely, O(nlog?n), is
still toolarge. Isit possibleto reduce this to O(nlog n) and still achievean O(log n) running
time?

45 Inspect the network obtained in problem 4.1. You will likely notice that it consists of m
columns of n/2 processors each, where misa function of n obtained from your analysis. It
is required to exploit this regular structure to obtain a sorting network consisting of a
singlecolumn of n/2 processors that sorts a sequence of length n in O(m) time. The idea is
to keep the processors busy all the time as follows. The input sequence is fed to the
processors and an output is obtained equal to that obtained from the first column of the
bitonic sorting network. This output is permuted appropriately and fed back to the
processors to obtain the output of the second column. Thiscontinuesform iterations, until
the sequence is fully sorted. Such a schemeis illustrated in Fig. 4.8 for n = 8.
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Py
Py
PERMUTATION
NETWORK
P3
Ps

Figure48 Sorting usng permutation network.

The sorting network in problem 4.5 has a cost of O(nm). |s this optimal? The answer, of
course, depends on m If the cost is not optimal, apply the same idea used in procedure
MERGE SPLIT to obtain an optimal algorithm.

Can you design a sorting network that uses O(n) processorsto sort a sequence of length »
in O(log n) time?

Establish the correctness of procedure ODD-EVEN TRANSPOSITION.

As example 4.2 illustrates, a sequence may be completely sorted several iterations before
procedureODD-EVEN TRANSPOSITION actually terminates. I n fact, if thesequenceis
initially sorted, the O(n) iterations performed by the procedure would be redundant. |s it
possible, within the limitations of the linear array model, to modify the procedure so that
an early termination is obtained if at any point the sequence becomes sorted?
Procedure ODD-EVEN TRANSPOSITION assumes that all elements of the input
sequence are available and resideinitially in the array of processors. It is conceivable that
in some applications, the inputs arrive sequentially and are received one at a time by the
leftmost processor P,. Similarly, the output is produced one element at a time from p,.
Modify procedure ODD-EVEN TRANSPOSITION so that it runs under these con-
ditions and completes the sort in exactly the same number of steps as before (i.e., without
an extra time penalty for input and output).

When several sequences are queued for sorting, the procedure in problem 4.9 has a period
of 2n. Show that this period can be reduced to »n by allowing both P, and P, to handle
input and output. In this way, m sequences of nelements each are sorted in (m + |)nsteps
instead of 2mn.
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In section 4.3 we showed how procedure ODD-EVEN TRANSPOSITION can be
modified so that itscost becomesoptimal. Show that it is possibleto obtain a cost-optimal

sorting agorithm on the linear array for the case of sequential input. One approach to
consider isthefollowing. For a sequence of length n, the linear array consistsof 1 + logn
processors. The leftmost processor receives the input, the rightmost produces the output.
Each processor is connected to its neighbors by two lines, as shown in Fig. 4.9for n = 8.
This array can be made to sort in O(n) time by implementing an adapted version o the
sequential procedure Mergesort. This procedure consists of logn stages. In stage i sorted
subsequences o length 2 are created, i = 1,2,...,logn. In the parallel adaptation, the
steps are run overlapped on the linear array.

In procedure MERGE SPLIT each processor needs at least 4n/N storage locations to
merge two sequences of length n/N each. Modify the procedure to require only 1 + n/N
locations per processor.

A variant of the linear array that uses a bus was introduced in problem 2.9. Design an
algorithm for sorting on this model, where P, receivesthe input sequence of sizen and P,
produces the output.

The nelements of a sequence areinput to an n*/? x n'/? mesh-connected SIM D compuiter,
oneelement per processor. It isrequired to sort thissequencein row-major order. Derivea
lower bound on the running time required to solve this problem.

Use theresultsof problems 3.6and 3.7 to obtain an algorithm for odd—evensorting on an
m X m mesh-connected SIMD computer. Analyze your algorithm.

Isthealgorithm obtained in problem 4.16 cost optimal ? If not, apply thesame idea used in
procedure MERGE SPLIT to obtain a cost-optimal agorithm.

Usetheresults of problems 3.12 and 3.13 to obtain an algorithm for bitonic sorting on an
m x m mesh-connected SIMD computer. Analyze your agorithm.

Repeat problem 4.17 for the algorithm in problem 4.18.

The algorithm in problem 4.16 returns a sequence sorted in row-major order. Another
indexing that may sometimes be desirable is known as snakelike row-major order: Theith
element residesin row j and column k, where

. [jm*Tkt1 forjeven,
i=
im+ m—k forj odd.

Thisisillustrated in Fig. 4.10for n = 16. Show that after a sequence has been sorted into
row-major order, its elements may be rearranged into snakelike row-major order in
2(n'’? — 1) routing steps.

Another indexing for sequencessorted on two-dimensional arraysisthe shuffled row-major
order.Letelementi,1 < i < n,resideinrow j and column k in arow-major ordering. If i' is
theinteger obtained by applying a perfect shuffleto the bitsin the binary representation of
i — 1, then element i' *+ 1 occupies position (j, k) in a shuffled row-major indexing. Thisis

INPUT o o OUTPUT
— P 2 P3 Ps ——

Figure49 Cost-optimal sorting on linear array for case of sequential input.
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Figure 410 Snakelike row-mgjor order.

illustrated in Fig. 4.11 for n= 16. Show that if n elements have already been sorted
according to row-major order and if each processor can store n'/? elements, then the n
elements can be sorted into shuffled row-major order using an additional 4(n'/2 — 1)
routing steps.

A variant of the mesh interconnection network that usesa bus was introduced in problem
2.10. Repeat problem 4.15 for this model.

Design a parallel algorithm for sorting on the model of problem 2.10.

Design an algorithm for sorting on a tree-connected SIM D computer. The input sequence
isinitially distributed among the leaves of the tree. Analyze the running time, number of
processors used, and cost of your algorithm.

Repeat problem 4.24 for the case where the sequence to be sorted is presented to the root.

Derivealower bound for sorting a sequenceof length n on the pyramid machinedefined in
problem 3.16.

Design an algorithm for sorting on the pyramid machine.

Show that any parallel algorithm that uses a cube-connected SIMD computer with N
processors to sort a sequence of length n, where N = n, requires Q(log N ) time.
Implement theidea of sorting by enumeration on a cube-connected SI M D computer and
analyze the running time of your implementation.

Show that any parallel algorithm that uses the perfect shuffle interconnection network
with N processors to sort a sequence of length n, where N = 2™ = n, requires Q(log N)
time.

Consider a CRCW SM SIM D computer where write conflictsare resolved asfollows: The
write operation isallowed if and only if all processors writing simultaneously in the same
memory location are attempting to store the same value. Describe an algorithm for this

11 |12 {15 | 16

Figure411 Shuffled row-major order.
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model that can determine the minimum of n numbers {x,,X,, ..., X} in constant time
using n? processors. If more than one of the numbers qualify, the one with the smallest
subscript should be returned.

4.32 Show how procedure CRCW SORT can be modified to run on an EREW model and
analyze its running time.

4.33 Show that procedure CREW SORT can be simulated on an EREW computer in
O([(n/N) * log?n]log n) time if a way can be found to distinguish between simple read
operations and multiple-read operations, as in problem 3.20.

4.34 In procedure EREW SORT, why are steps 5 and 6 not executed simultaneously?

435 Derive an agorithm for sorting by enumeration on the EREW model. The algorithm
should use n'** processors, where k is an arbitrary integer, and run in Ok log n) time.

436 Let the elements of the sequence S to be sorted belong to the set {0,1,...,m — 1). A
sorting agorithm known as sorting by bucketing first distributes the elements among a
number of bucketsthat are then sorted individually. Show that sortingcan be completed in
O(log n) time on the EREW model using n processors and O(mn) memory locations.

4.37 The amount of memory required for bucketing in problem 4.36 can be reduced when the
elements to be sorted are binary strings in the interval [0,2° — 1] for some b The
agorithm consistsof biterations. Duringiterationi,i=0,1, ...,b— 1, each elementto be
sorted is placed in one of two buckets depending on whether its ith bit is 0 or 1; the
sequenceis then reconstructed using procedure ALLSUMS so that al elementswith a 0
ith bit precede al the elements with a 1 ith bit. Show that in this case sorting can be
completed in O(blog n) time using O(n) processors and O(n) memory locations.

4.38 Assume that an interconnection network SIMD computer with » processors can sort a
sequence of length nin O(f (n)) time. Show that this network can simulate an algorithm
requiring time T on an EREW SM SIMD computer with n memory locations and n
processors in O(Tf(n)) time.

4.39 Design an asynchronousalgorithm for sorting a sequenceof length n by enumeration on a
multiprocessor computer with N processors.

440 Adapt procedure QUICKSORT to run on the model of problem 4.39.

4.8 BIBLIOGRAPHICAL REMARKS

An extensivetreatment of parallel sorting isprovided in [Akl 2]. Taxonomies of parallel sorting
algorithms can be found in [Bitton] and [Lakshmivarahan]. The odd—even sorting network
was first presented in [Batcher]. Other sorting networks are proposed in [Leg], [Miranker],
[Tseng], [Window], and[Wong]. The theoretically fastest possible network for sorting using
O(n) processors is described in [Leighton] based on ideas appearing in [Ajtai]: It sorts a
sequence of length n in O(log n) time and is therefore cost optimal. However, the asymptotic
expression for the running time of this network hides an enormous constant, which makes it
infeasible in practice.

Procedure ODD-EVEN TRANSPOSITION is attributed to [Demuth]. The idea on
which procedure MERGE SPLIT is based comesfrom [Baudet]. Other algorithms for sorting
on alinear array are describedin[Akl 1],[Todd], and [Yasuurg]. Parallel sorting algorithms
for a variety of interconnection-network SIMD computers have been proposed. These include
agorithms for the perfect shuffle ((Stone]), the mesh ([Kumar], [Nassimi 1], and [ Thompson]),
the tree ([Bentley], [Horowitz 2], and [Orengtein]), the pyramid ([Stout]), and the cube
([Nassimi 2]).
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It is particularly interesting to point out the difference between the tree- and mesh-
connected computersin their ability to sort asequence S = {sy, s,,...,s,}. Assume that a tree
with nleaf processors P, P,,..., P,isavailable. Initialy, P; containss;. It isrequired to sort S
such that P; contains the ith element of the sorted sequence. Clearly, any parallel algorithm for
solving this problem requires Q(n) timein the worst case since all the valuesin the right subtree
of the root may have to be exchanged (through the root) with those in the left subtree. It is
shown in [Akl 2] how an O(log n)-processor tree-connected computer can sort Sin O(n) timefor
an optimal cost of O(nlogn). Now consider an n'* x n'/2 mesh with processors Py, P, ..., P,
arranged in row-major order. Initially P; containss;. Again, it is required to sort S such that P;
contains the ith element of the sorted sequence. Suppose that the maximum and minimum
elements of § are initialy in P, and P,, respectively. Since these two elements must be
exchanged for the outcome of the sorting to be correct, Q(n'/?) steps are required to sort on the
mesh. An algorithm is described in [Akl 2] for sorting S on an n-processor mesh-connected
computer in O(n'/?) time. It isal so shown in [Akl 2] how an N-processor mesh can sort S with a
running time of

t(n) = O((n/N)log(n/N) + (n/N)O(N'"?) + (2n/N)O(log>N /%)),

for an optimal cost of O(n log n) when N < log?n.

Procedure CRCW SORT is based on ideas appearingin [Kugera]. A proposal ismadein
[Gottlieb] for a computer architecture implementing the concurrent-read, concurrent-write
features of the model in section 4.4. Procedure CREW SORT isadapted from [Shiloach]. Other
paralel sorting algorithms for the CREW model were proposed in [Hirschberg], [Kruskal],
and [Preparata]. The procedure in section 4.6.2 and procedure EREW SORT arefrom [Akl 3]
and [Akl 17, respectively. Other issues of interest when studying parallel sorting are external
sorting, covered in [Akl 4], [Bonnucelli], and [Even], and paralel probabilistic sorting
algorithms, examples of which appear in [Horowitz 2], [Reif], and [Reischuk]. The im-
portance of parallel sorting in simulating powerful models of parallel computation on weaker
ones is outlined in [Parberry]. A description of the sequential sorting procedure Mergesort
mentioned in problem 4.12 can be found in [Horowitz 1].
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Searching

5.1 INTRODUCTION

Searching is one of the most fundamental operationsin the field of computing. It is
used in any application where we need to find out whether an element belongstoalist
or, more generaly, retrievefrom afileinformation associated with that element. In its
most basic form the searching problem is stated as follows: Given a sequence
S={s(,5,5,-..,8,) Of integers and an integer X, it is required to determine whether
X =s, for some s, in S

In sequential computing, the problem is solved by scanning the sequence S and
comparing X with its successiveelements until either an integer equal to x isfound or
the sequence is exhausted without success. Thisis given in what follows as procedure
SEQUENTIAL SEARCH. As soon as an s, in S is found such that x = s,, the
procedure returns k; otherwise 0 is returned.

procedure SEQUENTIAL SEARCH (S, x, k)

Stepl: (L) iet
(12) k<o
Step2  while(i <nandk =0)do
if s; =x thenk «iend if
i—i+1
end while. O

In the worst case, the procedure takes O(n) time. This is clearly optimal since every
element of S must be examined (when x is not in S) before declaring failure.
Alternatively, if S is sorted in nondecreasing order, then procedure BINARY
SEARCH of section 3.3.2 can return theindex of an element of Sequal to x (or 0 if no
such element exists) in O(log n) time. Again, this is optimal since this many bits are
needed to distinguish among the n elements of S.

In this chapter we discuss parallel searching algorithms. We begin by consider-
ing the case where Sissorted in nondecreasing order and show how searching can be
performed on theSM SIM D model. Asit turns out, our EREW searching algorithmis



Sec. 5.2 Searching a Sorted Sequence 113

no faster than procedure BINARY SEARCH. On the other hand, the CREW
algorithm matchesa lower bound on the number of parallel stepsrequired to search a
sorted sequence, assuming that all the elements of S are distinct. When this
assumption is removed, a CRCW algorithm is needed to achieve the best possible
speedup. Wethen turn to the more general case wherethe elements of Sare in random
order. Here, although the SM SIMD algorithms are faster than procedure
SEQUENTIAL SEARCH, the same speedup can be achieved on a weaker model,
namely, a tree-connected SIMD computer. Finaly, we present a paralel search
algorithm for a mesh-connected SIMD computer that, under some assumptions
about signal propagation time along wires, is superior to the tree algorithm.

5.2 SEARCHING A SORTED SEQUENCE

We assume throughout this section that the sequence S= {s,,s,,...,s,} issorted in
nondecreasing order, that is, s, <s, <.-- <s,. Typicaly, a file with n records is
available, whichissorted on thes field of each record. Thisfileisto be searched using s
asthekey; that is, givenaninteger x, a record issought whose s field equals x. If such a
record isfound, then the information stored in the other fieldsmay now be retrieved.
Theformat of arecordisillustrated in Fig. 5.1. Note that if thevalues of the sfieldsare
not unique and all records whose s fieldsequal a given X are needed, then the search
algorithm iscontinued until thefileis exhausted. For simplicity we begin by assuming
that the s; are distinct; this assumption is later removed.

5.2.1 EREW Searching

Assumethat an N-processor EREW SM SIM D computer isavailableto search Sfor a
givenelement x, wherel < N < n. To begin, the value of X must be made known to all
processors. This can be done using procedure BROADCAST in O(log N) time. The
sequence Sis then subdivided into N subsequencesof length n/N each, and processor
P; is assigned {Si- 1ymm+15 Si-1)mm+2> - Simy- All processors now perform
procedure BINARY SEARCH on their assigned subsequences. This requires
O(log(n/N)) in the worst case. Since the elements of S are all distinct, at most one
processor finds an s, equal to x and returns k. The total time required by this EREW
searching algorithm istherefore O(log N) + O(log(n/N)), whichis O(log n). Since-thisis
precisely the time required by procedure BINARY SEARCH (running on a single
processor!), no speedup is achieved by this approach.

[ [ ]
Si OTHER INFORMATION Figure5.1 Format of record in file to be
1 l I searched.
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5.2.2 CREW Searching

Again, assumethat an N-processor CREW SM SIM D computer isavailable to search
Sfor a given element x, where 1 < N < n. The same algorithm described for the
EREW computer can be used here except that in this case al processors can read x
simultaneously in constant time and then proceed to perform procedure BINARY
SEARCH on their assigned subsequences. This requires O(log(n/N)) timein the worst
case, which isfaster than procedure BINARY SEARCH applied sequentialy to the
entire sequence.

It is possible, however, to do even better. Theideaisto use a parallel version of
the binary search approach. Recall that during each iteration of procedure BINARY
SEARCH the middle element s,, of the sequence searched is probed and tested for
equality with theinput x. If s,, > x, then al the elements larger than s,, are discarded;
otherwise all the elements smaller than s,, are discarded. Thus, the next iteration is
applied to a sequence haf aslong as previously. The procedure terminates when the
probed element equals X or when al elements have been discarded. In the parallel
version, there are N processorsand hence an (N + 1)-ary search can be used. At each
stage, the sequence is split into N + 1 subsequences of equal length and the N
processors simultaneously probe the elements at the boundary between successive
subsequences. Thisisillustrated in Fig. 5.2. Every processor compares the element s of
Sit probes with x:

1. If s > x, then if an element equal to x isin the sequence at all, it must precede s;
consequently, s and all theelements that follow it (i.e., toitsright in Fig. 5.2) are
removed from consideration.

2 The opposite takes placeif s < x.

Thuseach processor splits the sequenceinto two parts: those elements to be discarded
as they definitely do not contain an element equal to x and those that might and are
hence kept. This narrows down the search to the intersection of al the parts to be
kept, that is, the subsequence between two elements probed in this stage. This
subseguence, shown hachured in Fig. 5.2, is searched in the next stage by the same
process. This continues until either an element equal to x isfound or all the elements
of Sare discarded. Since every stageis applied to a sequence whoselength is 1/(N + 1)
the length of the sequence searched during the previous stage less 1, O(logy , ,(n T 1))
stages are needed. We now develop the algorithm formally and then show that thisis
precisely the number o steps it requires in the worst case.

Let g be the smallest integer such that n<(N+1)¢—1 that is
g = [log(n + 1)/log(N + 1] Itis possible to prove by induction that g stages are
sufficient to search a sequence o length nfor an element equal to an input x. Indeed,
the statement is true for g = 0. Assumeit istruefor (N + 1*~! — 1. Now, to search a
sequence of length (N + 1)? — 1, processor P;, i = 1,2,..., N, compares x to s; Where
j =i(N* 1)y asshownin Fig. 5.3. Following thiscomparison, only a subsequence
of length (N+ 1) — 1 needs to be searched, thus proving our claim. This
subsequence, shown hachured in Fig. 5.3, can be determined as follows. Each
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processor P; uses a variable ¢; that takes the value gt or right according to whether
the part of the sequence P; decides to keep is to the left or right of the element it
compared to x during thisstage. Initially, the value df each c; isirrelevant and can be
assigned arbitrarily. Two constants ¢, = right and ¢y 4 y = l€ft are also used. Follow-
ing the comparison between x and an element s;, o S P; assignsa valueto ¢; (unless
5;, =X, in which case the value o ¢; is again irrelevant). If ¢; # ¢;_, for some i,
1<i<N, then the sequence to be searched next runs from s, to s, where
q=(—- 1Nt 1"+ 1andr=i(N+1)"! — 1 Precisely one processor updatesq
and r in the shared memory, and all remaining processorscan smultaneoiudy read the
updated valuesin constant time. The algorithm is given in what followsas procedure
CREW SEARCH. Theprocedure takes Sand x asinput: If x = s, for somek, then k is
returned; otherwisea 0 is returned.

procedure CREW SEARCH (S, x, k)

Step 1 {Initializeindices of sequence to be searched}
(1) ge1
(L.2) r «n.

Step 2 {Initializeresultsand maximum number of stages}
(2D k<0
(2.2) g« [og(n T 1)log(N * 1.
Step 3: while(g< rand k =0) do
BLjoe=q~1
(3.2) for i=1toN doin paralld
D ji=@=-DFiNT 1!
{P, comparesx tos; and determinesthepart of the sequenceto be kept}
(i) ifj,<r
then if s;, = x
then k « j;
deeif s, > x
then c; « l€ft
dsec; « right
end if
end if
dse(@)jirt1
(b) ¢; « left
end if
{Theindicesdf the subsequenceto be searched in thenext iterationare
computed}
(i) if ¢; # ¢c;_, then (@) g« ji_, T 1
) rej;—1
end if
(iv)ifi=Nande; # ¢, thengej; T 1
end if
end for
(33) g—g-1
end while J
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Figures.2 Searching sorted sequence with N processors.

Py Pa P; Pin Py
2 (Nen@ ! 2Ne)9 - (N+1)9"-1‘“ N(N+1)97 n

Figure5.3 Derivation of number of stages required to search sequence.

Steps 1, 2, 3.1, and 3.3 are performed by one processor, say, P,, in constant time. Step
3.2 also takes constant time. As proved earlier, thereare at most g iterations of step 3.
It followsthat procedure CREW SEARCH runsin O(log(n + 1)/log(N * 1))time, that
is, t(n) = O(logy . ,(n T 1)). Hence ¢(n) = O(Nlogy . ,(n T 1)), which is not optimal.

Example5.1

Let S={1,4,6,9,10, 11, 13, 14, 15, 18, 20, 23, 32, 45, 51} be the sequence to be searched
usinga CREW SM SIMD computer with N processors. Weillustrate two successful and
one unsuccessful searches.

1 Assume that N = 3 and that it is required to find the index k of the element in S

equal to 45 (i.e., x = 45). Initially, g= 1, r = 15,k = 0, and g = 2 During the first
iteration of step 3, P, computes j, =4 and compares s, to X. Since 9 < 45,
¢, = right. Simultaneously, P, and P, compares, and s, ,, respectively, to x: Since
14 < 45and 23 < 45, ¢, = right and ¢, = right. Now ¢, # ¢,; therefore q = 13and
r remains unchanged. The new sequence to be searched runs from s, tos,,, as
shown in Fig. 5.4(a), and g = 1. In the second iteration, illustrated in Fig. 5.4(b), P,
computes j; = 12+ 1 and compares s, to x: Since 32 < 45, ¢, = right. Simulta-
neously, P, comparess,, to x, and since they are equal, it setsk to 14 (¢, remains
unchanged). Also, P, compares s,s to X: Since 51 > 45, ¢; = left. Now ¢; # C,:
Thus g=12+ 2+ 1=15and r =12+ 3 -1 = 14. The procedure terminates
with k = 14.

Say now that x = 9, with N still equal to 3. In thefirst iteration, P, comparess, to
x: Since they are equal, k is set to 4. All simultaneous and subsequent com-
putations in this iteration are redundant since the following iteration is not
performed and the procedure terminates early with k = 4.
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Figure54 Searchingsequence d fifteeneements using procedure CREW SEARCH.

3 Findly, let N =2 and x = 21. Initially, g = 3. In the first iteration P, computes
j, =9 and compares sg to x: Since 15< 21, ¢, =right. Simultaneously, P,
computes j, = 18: Since 18 > 15, j, points to an element outside the sequence.
Thus P, setsj, = 16 and ¢, = left. Now ¢, # ¢,: Thereforeq = 10and r = 15, that
is, thesequence to be searched in the next iteration runsfrom s, tos,s,and g = 2.
Thisisillustrated in Fig. 5.4(c). In thesecond iteration, P, computesj; =9 + 3and
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comparess, , to x: snce 23 > 21, ¢, = left. Smultaneoudy, P, computes j, = 15:
Snce 51> 21, ¢, = left. Now ¢, # ¢o, and theefore r = 11 and q remans
unchanged, as shown in Fig. 5.4(d). In the find iteration,g = 1 and P, computes
j,=9* 1 and compares s,, to x: Since 18 < 21, ¢; = right. Smultaneoudly, P,
computes j, = 9+ 2 and compares s,, to x: Since 20 < 21, ¢, = right. Now
¢, # ¢,, and thereforeq = 12. Sinceq > r, the procedureterminates unsuccessfully
withk=0.

We conclude our discussion of parallel searching algorithms for the CREW

model with the following two observations:

1. Under the assumption that the elements of S are sorted and distinct, procedure

CREW SEARCH, although not cost optimal, achievesthe best possiblerunning
time for searching. This can be shown by noting that any algorithm using N
processors can compare an input element x to at most N elements of S
simultaneously. After these comparisons and the subsequent deletion of ele-
ments from Sdefinitely not equal to x, a subsequence must be left whose length
is at least

(- NN+ DI -NYN+=[n+t1yNn+1]-1

After g repetitions of the same process, we are left with a sequence of length
[((n T AN T 1)7] — 1. It follows that the number of iterations required by any
such parallel algorithm is no smaller than the minimum g such that

[(nt AV +1¥]-1<0,
which is
Mog(n + 1)/log(N + 1)1.

Two parallel algorithms were presented in this section for searching a sequence
of length non a CREW SM SIMD computer with N processors. The first
required O(log(n/N)) time and the second O(log(n + 1)/log(N + 1)). In both
cases, if N =n, then the algorithm runs in constant time. The fact that the
eements of S are distinct still remains a condition for achieving this constant
running time, as we shall see in the next section. However, we no longer need S
to be sorted. The algorithm is simply as follows. In one step each P, i =1, 2,
..., h,can read X and compareit to s;; if X isequal to one element of S, say, s,
then P, returns k; otherwise k remains 0.

5.2.3 CRCW Searching

In the previous two sections, we assumed that all the elements of the sequence Sto be
searched are distinct. From our discussion so far, the reason for this assumption may
have become apparent: If each s; is not unique, then possibly more than one processor
will succeed in finding a member of S equal to x. Consequently, possibly several
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processors will attempt to return a value in the variable k, thus causing a write
conflict, an occurrencedisallowed in both the EREW and CREW models. Of course,
we can remove the uniqueness assumption and still use the EREW and CREW
searching algorithms described earlier. The idea is to invoke procedure STORE (see
problem 2.13) whosejob isto resolvewrite conflicts: Thus, in O(log N) time we can get
the smallest numbered of the successful processors to return the index k it has
computed, wheres, = x. The asymptotic running time of the EREW search algorithm
in section 5.2.1 is not affected by this additional overhead. However, procedure
CREW SEARCH now runsin

t(n) = O(log(n t 1)/log(N + 1)) T+ O(log N).

In order to appreciate the effect o this additional O(log N) term, note that when
N = n, t(n) = O(log n). In other words, procedure CREW SEARCH with n processors
is no faster than procedure BINARY SEARCH, which runs on one processor!

Clearly,in order to maintain the efficiency of procedure CREW SEARCH while
giving up the uniqueness assumption, we must run the algorithm on a CRCW SM
SIM D computer with an appropriate write conflict resolution rule. Whatever the rule
and no matter how many processorsare successful in finding a member of Sequal to
X, only oneindex k will be returned, and that in constant time.

5.3 SEARCHING A RANDOM SEQUENCE

We now turn to the more general case of the search problem. Here the elementsd the
sequenceS = {sy, s, ..., s,} are not assumed to bein any particular order and are not
necessarily distinct. As before, we have afile with nrecordsthat isto be searched using
the s fidd of each record asthe key. Given an integer x, a record issought whoses fied
equals x; if such arecord isfound, then the information stored in the other fields may
now be retrieved. This operation is referred to as querying the file. Besides querying,
search is useful in file maintenance, such as inserting a new record and updating or
deleting an existing record. Maintenance, as we shall seg, is particularly easy when the
s fieldsare in random order.

We begin by studying parallel search agorithms for shared-mernory SIMD
computers. We then show how the power of this model is not really needed for the
search problem. Asit turns out, performance similar to that o SM SIMD algorithms
can beaobtained usingatree-connected SIM D computer. Finally, wedemonstrate that
a mesh-connected computer issuperior to the treefor searching if signal propagation
time along wires is taken into account when calculating the running time o
algorithms for both models.

5.3.1 Searching on SM SIMD Computers

The general algorithm for searching a sequence in random order on a SM SIMD
computer isstraightforward and similar in structure to the algorithm in section 5.2.1.
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We have an N-processor computer to search S= {s,, 5,,..., s, for agiven element x,
where 1 < N < n. The algorithm is given as procedure SM SEARCH:

procedure SM SEARCH (S, x, k)
Step 1 for i=1toN doin parald

Read x
end for.
Step 2 for i =1toN doin paralld
21) S« {S(i— DM+ 1 Si- DN +25 .0 si(n/N)}
(22) SEQUENTIAL SEARCH (S;, x, k;)
end for.

Step3 fori=1toN doin parald
if k; > 0then k « k; end if
end for. []

Analysis

We now analyze procedure SM SEARCH for each of the four incarnations of the
shared-memory model of SIMD computers.

5311 EREW. Step lisimplemented using procedure BROADCAST and
requires O(log N) time. In step 2, procedure SEQUENTIAL SEARCH takes O(n/N)
time in the worst case. Finally, procedure STORE (with an appropriate conflict
resolution rule) is used in step 3 and runs in O(log N) time. The overall asymptotic
running time is therefore

t(n) = O(log N) + O(n/N),
and the cost is

c(m) = O(Nlog N) + O(n),
which is not optimal.

5.3.1. 2ERCW. Steps1 and 2 are as in the EREW case, while step 3 now
takes constant time. The overall asymptotic running time remains unchanged.

531.3 CREW. Step ! now takesconstant time, whilesteps2 and 3areasin
the EREW case. The overall asymptotic running time remains unchanged.

5.3.1. 4CRCW. Bothsteps 1 and 3 take constant time, whilestep 2 isasin
the EREW case. The overal running timeis now O(n/N), and the cost is
c(n) = N x O(n/N) = O(n),

which is optimal.
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In order to put the preceding results in perspective, let us consider. a situation
where the following two conditions hold:

1 There are as many processors as there are elementsin S, that is, N = n.
2 Thereareq queries to be answered, that is, g values of x are queuecl waiting for
processing.

In the case o the EREW, ERCW, and CREW models, the time to process one query
is now O(log n). For q queries, this timeissimply multiplied by afactor o g. Thisisof
course an improvement over the time required by procedure SEQUENTIAL
SEARCH, which would be on the order of gn. For the CRCW computer, procedure
SM SEARCH now takes constant time. Thus g queries require a constant multiple of
q time units to be answered.

Surprisingly, a performance dlightly inferior to that of the CRCW algorithm but
dtill superior to that of the EREW algorithm can be obtained using a much weaker
model, namely, the tree-connected SIMD computer. Here a binary tree with O(n)
processors processes the queries in a pipeline fashion: Thus the q queries require a
constant multiple of logn ¥ (g — 1) time units to be answered. For large: values of q
(i.e., g > logn), this behavior isequivalent to that of the CRCW algorithm. We now
turn to the description of this tree algorithm.

5.3.2 Searching on a Tree

A tree-connected SIMD computer with n leavesis availablefor searching a file of n
records. Such a tree isshown in Fig. 55 for n = 16. Each leaf of the tree stores one
record of the file to be searched. The root isin charge of receiving input from the
outside world and passing acopy of it to each of itstwo children. Itisalso responsible
for producing output received from its two children to the outside world. Asfor the
intermediate nodes, each of these is capable of:

1 receiving one input from its parent, making two copies of it, and sending one
copy to each of its two children; and

2 receiving two inputsfrom itschildren, combining them, and passing the result to
its parent.

The next two sections illustrate how the file stored in the leaves can be queried and
maintained.

5.3.2.1 Querying. Given an integer X, it is required to search the file of
records on the s fidd for X, that is, determine whether there is a value in
S={sy,5;,...,5,5 equal to x. Such a query only requires a yesor no answer. Thisis
the most basic form of querying and is even simpler than the one that we have been
concerned with sofar in thischapter. The tree-connected computer handles thisquery
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Figure 55 Tree-connected computer for searching.

in three stages:

Stage | Theroot reads x and passesit to its two children. I n turn, these send x
to their children. The process continues until a copy of x reaches each ledf.
Stage2 Simultaneously,all leavescomparethes field of the record they storeto
x: If they are equal, the leaf produces a 1 as output: otherwise a 0 is produced.
Stage 3: The outputs of the leavesare combined by going upward in the tree:
Each intermediate node computes the logical o of itstwoinputs(ie.,0a 0 =0,
Oal=11a0=1andla 1=1) and passesthe result to its parent. The
process continues until the root receivestwo bits, computes their logical or, and
produces either a 1 (for yes) or a 0 (for no).

It takes O(log n) timeto go down the tree, constant time to perform the comparison at
the leaves, and again O(log n) time to go back up the tree. Therefore, such a query is
answered in O(logn) time.

Example5.2
LetS = {25,14,36,18,15,17,19, 17} and x = 17. The threestagesaboveareillustrated in
Fig.56. O

Assume now that g such queries are queued waiting to be processed. They can
be pipelined down thetree sincetheroot and intermediate nodes arefreeto handle the
next query as soon as they have passed the current one along to their children. The
same remark applies to the leaves: As soon as the result of one comparison has been



Sec. 5.3 Searching a Random Sequence 123

(3) STAGE 1

(b) STAGE 2

Figure 56 Searching sequence of eight
(c) STAGE 3 elementsusing tree.

produced, each leef is ready to receivea new value of x. The results are also pipelined
upward: The root and intermediate nodes can compute the logical or of the next pair
of bits as soon as the current pair has been cleared. Typicaly, the root and
intermediate nodes will receivedata flowing downward (queries) and upward (results)
simultaneously: We assume that both can be handled in a single time unit; otherwise,
and in order to keep both flowsof data moving, a processor can switch :itsattention
from one direction to the other alternately. It takes O(log n) timefor the answer to the
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first query to be produced at the root. The answer to the second query is obtained in

thefollowing time unit. The answer to thelast query emergesq — 1 time unitsafter the

first answer. Thus the q answers are obtained in a total of O(log n) + O(q) time.
We now examine some variationsover the basicform of aquery discussed sofar.

1. Position If aquery issuccessful and element s, isequal to x, it may bedesired
to know the index k. Assume that the leaves are numbered 1,...,n and that leaf i
contains s;. Following the comparison with x, leaf i produces the pair (1, i) if s; = X;
otherwise it produces (0,i). All intermediate nodes and the root now operate as
follows. If two pairs (1,1) and (0, P are received, then the pair (1,i) is sent upward.
Otherwise, if both pairs have a1l as afirst element or if both pairs have a 0 as afirst
element, then the pair arriving from the left son is sent upward. In this way, the root
produces either

(i) (1,k) where k is the smallest index of an element in Sequal to x or

(ii) (0, k) indicating that no match for x wasfound and, therefore, that the value of k
is meaningless.

With this modification, the root in example 5.2 would produce (1, 6).
This variant of the basic query can itself be extended in three ways:

(@ When arecord isfound whose s field equals x, it may be desirable to obtain the
entire record as an answer to the query (or perhaps some of its fields). The
preceding approach can be generalized by having the leaf that finds a match
return a triple of the form (1, i, required information). The intermediate nodes
and root behave as before.

(b) Sometimes, the positions of all elements equal to X in § may be needed. In this
case, when an intermediate node, or the root, receivestwo pairs (1,i) and (1, j),
two pairs are sent upward consecutively. In this way the indices of all members
of Sequa to x will eventually emerge from the root.

(c) The third extension is a combination of (a) and (b): All records whose s fields
match x are to be retrieved. Thisis handled by combining the preceding two
solutions

It should be noted, however, that for each of the preceding extensions care must be
taken with regardsto timing if several queries are being pipelined. Thisis because the
result being sent upward by each node is no longer a single bit but rather many bits of
information from potentially several records (in the worst case the answer consists of
the n entire records). Since the answer to a query is now of unpredictable length, it is
no longer guaranteed that a query will be answered in O(log n) time, that the period is
constant, or that q queries will be processed in O(log n) + O(g) time.

2. Count Another variant of the basic query asks for the number o records
whose s field equals X. Thisis handled exactly as the basic query, except that now the
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intermediate nodes and the root compute the sum of their inputs (instead of the logical
or). With this modification, the root in example 5.2 would produce a 2.

3. Closest Element Sometimes it may be useful to find the element of S whose
value is closest to x. As with the basic query, x isfirst sent to the leaves.. Leaf i now
computes the absolute value of s; — x, call it a;, and produces (i, a,) as output.

Each intermediate node and the root now receivetwo pairs (i, a,) and (j, a;): The
pair with the smaller acomponent is sent upward. With this modification and x = 38
asinput, the root in example 5.2 would produce (3, 2) as output. Note that the case o
two pairs with identical a componentsis handled either by choosing one of the two
arbitrarily or by sending both upward consecutively.

4. Rank Therank of an element x in S isdefined as the number of elements of S
smaller than x plus 1. We begin by sending X to the leavesand then having each lesf i
producealif s; < X,and a0 otherwise. Now therank of x in Siscomputed by making
al intermediate nodesadd their inputs and send the result upward. Theroot adds 1 to
the sum of itstwoinputs before producing the rank. With this modification, the root's
output in example 5.2 would be 3.

It should be emphasized that each of the preceding variants, if carefully timed,
should have the same running time as the basic query (except, o course, when the
queries being processed do not have constant-length answers as pointed out earlier).

5.3.2.2 Maintenance. We now address the problem of maintaining a file
of recordsstored at the leavesd atree, that is, inserting a new record and updating or
deleting an existing record.

1. Insertion In atypical file, records are inserted and deleted continualy. It is
therefore reasonable to assume that at any given time a number of leaves are
unoccupied. We can keep track of thelocation of these unoccupied leaves by storing
in each intermediate node and at the root

(i) the number of unoccupied leavesin its left subtree and
(i) the number of unoccupied leavesin its right subtree.

A new record received by the root is inserted into an unoccupied lesf as follows:

(i) Theroot passesthe record to the one of its two subtrees with unoccupied leaves.
If both have unoccupied leaves, the root makes an arbitrary decision; if neither
does, the root signals an overflow situation.

(i) When an intermediate node receives the new record, it routes it to its subtree
with unoccupied leaves (again, making an arbitrary choice, if necessary).

(iii) The new record eventually reaches an unoccupied leaf where it is stored.

Note that whenever the root, or an intermediate node, sends the new record to a
subtree, the number of unoccupied leavesassociated with that subtreeeis decreased by
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1. It should beclear that insertion isgreatly facilitated by thefact that thefileis not to
be maintained in any particular order.

2. Update Say that every record whose s field equals X must be updated with
new information in (some of) its other fields. Thisis accomplished by sending x and
the new information to all leaves. Each legf i for which s; = x implements the change.

3. Deletion If every record whose s field equals X must be deleted, then we begin
by sending x to all leaves. Each ledf i for which s; = x now declaresitsdf as unoccupied
by sending a 1 to its parent. This information is carried upward until it reaches the
root. On itsway, it increments by 1 the appropriate count in each node of the number
of unoccupied leaves in the left or right subtree.

Each o the preceding maintenance operations takes O(log n) time. As before, q
operations can be pipelined to require O(log n) + O(g) time in total.
We conclude this section with the following observations.

1 We have obtained a search algorithm for a tree-connected computer that is
moreefficient than that described for a much stronger model, namely, the EREW SM
SIMD. Is there a paradox here? Not really. What our result indicates is that we
managed to find an algorithm that does not require the full power of the shared-
memory model and yet is more efficient than an existing EREW algorithm. Since any
algorithm for an interconnection network SIMD computer can be simulated on the
shared-memory model, the tree algorithm for searching can be turned into an EREW
algorithm with the same performance.

2. It may be objected that our comparison of the tree and shared-memory
algorithmsisunfair sinceweare using 2n — 1 processorson the treeand only n on the
EREW computer. This objection can be easily taken care of by using a tree with n/2
leaves and therefore atotal of » — 1 processors. Each leaf now stores two records and
performs two comparisons for every given x.

3. If atree with N leavesis available, where 1 < N < n, then n/N records are
stored per leaf. A query now requires

(i) O(log N) time to send x to the leaves,
(ii) O(n/N)time to search the records within each leaf for onewith an s field equal to
x, and
(iii) O(log N) time to send the answer back to the root,

that is, a total of O(log N)+ O(n/N). This is identical to the time required by the
algorithms that run on the more powerful EREW, ERCW, or CREW SM SIMD
computers. Pipelining, however, is not as attractive as before: Searching within each
leaf nolonger requires constant time and g queries are not guaranteed to be answered
in O(log n) * 0(q) time.
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4. Throughout the preceding discussion we have assumed that the wire delay,
that is, the time it takes a datum to propagate along a wire, from one level o the tree
to the next is a constant. Thus for a tree with n leaves, each query or maintenance
operation under this assumption requires a running time of O(log n) to be processed.
In addition, the time between two consecutive inputs or two consecutive outputs is
constant: In other words, searching on the tree has a constant period (provided, of
course, that the queries have constant-length answers). However, a direct hardware
implementation of the tree-connected computer would obviously have connections
between levels whose length grows exponentially with the level number. As Fig. 55
illustrates, the wire connecting a node at level i to its parent at level i T 1 has length
proportional to 2%, Themaximum wirelength for atree with nleavesis O(n) and occurs
at level log n — 1 Clearly, thisapproach is undesirable from a practical point of view,
asit resultsin a very poor utilization of the areain which the processors and wiresare
placed. Furthermore, it would yield a running time of O(n) per query if the
propagation timeis taken to be proportional to the wire length. In order to prevent
this, we can embed the treein a mesh, as shown in Fig. 5.7. Figure 5.7 illustrates an n-
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Figure5.7 Treeconnected computer embedded in mesh.
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node tree, with n= 31, where

(i) the maximum wire length is O(n'/?),
(ii) the area used is O(n), and
(iii) the running time per query or maintenance operation is O(n'/?) and the period is
O(n''?), assuming that the propagation time of a signal across a wire grows
linearly with the length o the wire.

This is a definite improvement over the previous design, but not sufficiently so to
make the tree the preferred architecture for search problems. In the next section we
describe a parallel algorithm for searching on a mesh-connected SIMD computer
whose behavior is superior to that o the tree algorithm under the linear propagation
time assumption.

5.3.3 Searching on a Mesh

In this section we show how a two-dimensional array of processors can be used to
solve the various searching problems described earlier. Consider the n-processor
mesh-connected SIMD computer illustrated in Fig. 5.8 for n= 16, where each
processor stores one record o the file to be searched. This architecture has the
following characteristics:

1. The wire length is constant, that is, independent of the size of the array;
2. the area used is O(n); and

3. the running time per query or maintenance operation is O(r!/?) and the period is
constant regardless of any assumption about wire delay.

Clearly, this behavior is a significant improvement over that of the tree
architecture under the assumption that the propagation time of asignal along a wireis
linearly proportional to thelength of that wire. (Of course, if the wire delay isassumed
to be a constant, then the tree issuperior for the searching problem sincelogn < n'/?
for sufficiently large n.)

5.3.3.1 Querying. In order to justify the statement in 3 regarding the
running time and period of query and maintenance operations on the mesh, we
describe an algorithm for that architecture that solves the basic query problem;
namely, given aninteger x, it isrequired to search thefile of records on the s field for x.
We then show that the algorithm produces a yes or no answer to such a query in
O(n'"?) time and that g queries can be processed in O(q) T O(n!/?) time. Let us denote
by s; ; the s field of the record held by processor P(i, j).The algorithm consists of two
stages: unfolding and folding.

Whfolding.  Processor P(1,1) reads x. If X =s, ,, it produces an output b, ,
equal to 1; otherwise b, ; = 0. It then communicates (b, ;, X) to P(1,2). If x =5, , or

by, =1, then b, , =1; otherwise b, , =0. Now simultaneously, the two row
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Figure58 Mesh-connected computer for searching.

neighbors P(1,1) and P(1,2) send (b, ,,x) and (b ,, X) to P(2,1) and P(2,2),
respectively. Once b, ; and b,, have been computed, the two column neighbors
P(1,2) and P(2, 2) communicate(b, ,, x)and (b, ,, X)to P(1, 3) and P(2, 3), respectively.
Thisunfolding process, which alternatesrow and column propagation, continues until
X reaches P(n'/2, n'/?),

Folding. At theend of the unfolding stage every processor has had a chance to
"s¢" x and compare it to the sfield of the record it holds. In this second stage, the
reverse action takes place. The output bits are propagated from row to row and from
column to column in an alternating fashion, right to left and bottom to top, until the
answer emerges from P(I, 1). The algorithm is given as procedure MESH SEARCH:

procedure MESH SEARCH (S, x, answer)

Step I {P(1, 1) reads the input)
if x=s;,thenb,,, <1
elseb; ; <0
end if.

Sep 22 {Unfolding}
fori=1ton?—1do
(21)for j=1toidoin paralle

(i) P(j, i) transmits (b;,;, X) to P(j, i T 1)

(ii) if (x=s5j44, O by; = Dthen bj;s, < 1
elseb;;,, 0

end if
end for
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(2.2) for j = 1to i + 1 do in parallel
(i) P(, ]) transmits (b, ;, x) to P(i + 1, j)
(i) if (x = $;41;0r by ;= 1) then by ;1
else by, ;<0
end if
end for
end for.

Step 3. {Folding}

Step 4:

for i = n'/? dewnto 2 do
(31 forj=1toidoin paralel
P(j, i) transmits b; ; to P(j, i — 1)

end for
(32) forj=1toi— 1doin paralel
bji—1 < by
end for
(33) if (b;;—y=1or b;=1)then b, ;1
eseb,; <0
end if

(34) forj=1toi— 1doin paralel
P(i, j) transmits b, ; to P(i — 1, j)

end for

(35 forj=1toi - 2doin paralel

bi—1,j"‘ bi,j

end for

(36) if (b;—y ;-1 =1o0r b,y =1)thenb;,_,; , <1

elseb; ;-1 <0
end if
end for.

{P(1,1) produces the output}
if by ; = 1then answer « yes

else answer < no
endif. O

Chap. 5

As each of steps 1 and 4 takes constant time and steps 2 and 3 consist of p'/? — 1
constant-time iterations, the time to process a query is O(n'/?). Notice that after the
first iteration of step 2, processor P(1,1) is free to receive a new query. The same
remark applies to other processors in subsequent iterations. Thus queries can be
processed in pipeline fashion. Inputs are submitted to P(1, 1) at a constant rate. Since
the answer to a basic query is of fixed length, outputsare also produced by P(l,1) at a
constant rate following the answer to the first query. Hence the period is constant.

Example 53

Let aset of 16 records storedin a4 x 4 mesh-connected SIMD computer be asshown in
Fig. 5.9. Each square in Fig. 5.9(a) represents a processor and the number insideit isthe s
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fidd of the associated record. Wiresconnecting the processorsare omitted for simplicity.
It is required to determine whether there exists a record with s fidd equal to 15 (ie.,
x = 15). Figures 5.9(b)-5.9(h) illustrate the propagation of 15 in the array. Figure 5.9(i)
showstherelevant b valuesat theend o step 2. Figures 5.9(j)-5.9(o) illustrate thefolding
process. Finally Fig. 5.9(p) showsthe result as produced in step 4. Note that in Fig. 5.9(e)
processor P(1, 1) isshown empty indicating that it hasdoneitsjob propagating 15 and is

now ready to receive a new query. [

Some final comments are in order regarding procedure MESH SEARCH.

1 Nojustification wasgivenfor transmitting b; ; along with X during the unfolding
stage. Indeed, if only one query is to be answered, no processor needs to
communicate its b value to a neighbor: All processors can compute and retain
their outputs; these can then be combined during the folding stage. However, if
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several queries are to be processed in pipeline fashion, then each processor must
first transmit its current b value before computing the next one. In thisway the
b; ; are continually moving, and no processor needs to store its b value.

2. When severa queriesare being processed in pipelinefashion, thefolding stage of
onequery inevitably encounters the unfolding stage of another. Aswe did for the
tree, we assume that a processor simultaneously receiving data from opposite
directions can process them in a single time unit or that every processor
alternately switches its attention from one direction to the other.

3. It should be clear that al variations over the basic query problem described in
section 5321 can be easily handled by minor modifications to procedure
MESH SEARCH.

5.3.3.2 Maintenance. All three maintenance operations can be easly
implemented on the mesh.

1. Insertion Each processor in the top row of the mesh keeps track o the
number of unoccupied processors in itscolumn. When a new record is to beinserted,
it is propagated along the top row until a column is found with an unoccupied
processor. The record is then propagated down the column and inserted in the first
unoccupied processor it encounters. The number of unoccupied processors in that
column is reduced by 1.

2. Updating All records to be updated are first located using procedure MESH
SEARCH and then the change is implemented.

3. Deletion When a record is to be deleted, it is first located, an indicator is
placed in the processor holding it signifying it is unoccupied, and the count at the
processor in the top row of the column is incremented by 1.

5.4 PROBLEMS

5.1 Show that Q(log n) is alower bound on the number of steps required to search a sorted
sequence of n elementson an EREW SM SIMD computer with n processors.

52 Consider the following variant of the EREW SM SIMD model. In one step, a processor
can perform an arbitrary number of computations locally or transfer an arbitrary number
of data (to or from the shared memory). Regardless of the amount of processing
(computations or data transfers) done, one step is assumed to take a constant number of
time units. Note, however, that a processor is allowed to gain access to a unique memory
location during each step (as customary for the EREW model). Let » processors be
available on this model to search a sorted sequence S ={s,, s,,...,s,} of length » for a
given value x. Suppose that any subsequence of S can be encoded to fit in one memory
location. Show that under these conditions the search can be performed in O(log!/2n) time.
[Hint: Imagine that the data structure used to store the sequencein shared memory isa
binary tree, asshown in Fig. 5.10(a) for n = 3L This tree can be encoded as shown in Fig.
5.10(b).]
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Prove that Q(log'/?n) is alower bound on the number of steps required to search a sorted
sequencedf n elementsusing n processors on the EREW SM SIMD computer o problem
52.

Let us reconsider problem 5.2 but without the assumption that arbitrary subsequences o
S can beencoded to fit in one memory location and communicated in one step. Instead, we
shall store the sequencein a tree with d levels such that a node at level i containsd — i
elementsof S and hasd —i t1 children, as shown in Fig. 5.11 for n = 23. Each node o
thistreeisassigned to a processor that has sufficientlocal memory to store the elementsof
Scontained in that node. However, a processor can read only one element of S at every
step. The key x to be searched for is initialy available to the processor in charge of the
root. An additional array in memory, with as many locations as there are processors,
allowsprocessor P, to communicate x to P; by depositing it in thelocation associated with
P;. Show that O(r) processors can search a sequence of length »n in O(log n/loglog n).
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Let M(N,r,s) be the number of comparisons required by an N-processor CREW SM
SIM D computer to merge two sorted sequences of length r and s, respectively. Prove that
M(N, 1,s) = [log(s T 1)/log(N + 1)1.
Let 1<r< Nandr < s Prove that

M(N, r, s) < [log(s + 1)/log(IN/r] + 1)].
Let 1 < N <r<s. Prove that
M(n, r, s} < [r/N1log(s + 1)1.

Consider an interconnection-network SIMD computer with n processors where each
processor has a fixed-size local memory and is connected to each of the other n — 1
processors by a two-way link. At any given step a processor can perform any amount of
computations locally but can communicate at most one input to at most one other
processor. A sequence S isstored in thiscomputer one element per processor. It isrequired
to search § for an element x initially known to one of the processors. Show that Q(log n)
steps are required to perform the search.

Assume that the sizeof thelocal memory of the processorsin the network of problem 58 is
no longer fixed. Show that if each processor can send or receive oneelement of Sor x at a
time, then searching S for some x can be done in O(log n/loglog n) time.

Reconsider the model in problem 58 but without any restriction on the kind of
information that can be communicated in one step from one processor to another. Show
that in this case the search can be performed in O(log!/?n) time.

Let the model of computation described in problem 2.9, that is, a linear array of N
processors with a bus, be available. Each processor has a copy of a sorted sequence S of n
distinct elements. Describe an algorithm for searching Sfor a given value x on this model
and compare its running time to that of procedure CREW SEARCH.

An algorithmisdescribed in example 1.4 for searching afilewith nentriesona CRCW SM
SIMD computer. The » entries are not necessarily distinct or sorted in any order. The
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algorithm uses a location Fin shared memory to determine whether early termination is
possible. Give a formal description of this algorithm.

Give a formal description of the tree algorithm for searching described in section 5.3.2.1.

Given a sequence S and a value x, describe tree algorithms for solving; the following
extensions to the basic query:

(8 Find the predecessor of x in S that is, the largest element of S smaller than x.

(b) Find the successor of x in S, that is, the smallest element of Slarger than x.

Afile dof nrecordsisstored in the leaves of a tree machine one record per leaf. Each record
consists o several fields. Given ((i, x;), (, x;), ..., (M, X)), it isrequired to find the records
with theith field equal to x;, thejth field equal to x;, and so on. Describe an algorithm for
solving this version of the search problem.

Consider a tree-connected SIM D computer where each node contains a record (not just
the leaves). Describe algorithms for querying and maintaining such a file of records.

Repeat problem 5.14 for a mesh-connected SIM D computer.

Consider the following modification to procedure MESH SEARCH. As usual, P(1,1)
receives the input. During the unfolding stage processor Pf(i, j) can send data simulta-
neously to P(i * 1,j) and P(, j + 1). When the input reaches P(n"/2, n'/2), this processor
can compute the final answer and produce it as output (i.e., there is no folding stage).
Describe the modified procedure formally and analyze its running time.

Repeat problem 5.11 for the case where the number of processorsisn and each processor
stores one element of a sequence S of n distinct elements.

A binary sequence df length n consisting of astring of 0’s followed by astring of 1’s isgiven.
It isrequired to find the length of the string of 0’s usingan EREW SM SIM D computer
with N processors, 1 < N < n Show that this can be done in O(log(n/N)) time.

In a storage and retrieval technique known as hashing, the location of a diata element in
memory is determined by its value. Thus, for every element x, the address of x is f(x),
wheref isan appropriately chosen function. This approach is used when the data space
(set of potential valuesto bestored)islarger than the storage space (memory locations) but
not al data need be stored at once. Inevitably, collisions occur, that is, f(x) = f(y) for
X # Y, and severa strategies exist for resolvingthem. Describe a parallel algorithm for the
hashing function, collision resolution strategy, and model of computation of your choice.
The agorithmsin this chapter addressed thediscretesearch problem, that is, searching for
avauein a given sequence. Similar algorithmscan be derived for the continuous case, that
is, searching for points at which a continuous function takes a given value. Describe
parallel algorithms for locating (within a given tolerance) the point at which a certain
function (i) assumes its largest value and (ii) is equal to zero.

It was shown in section 522 that procedure CREW SEARCH achievesthe best possible
running time for searching. In view o the lower bound in problem 5.1, show that no
procedure faster than MULTIPLE BROADCAST o section 3.4 existsfor simulating a
CREW algorithm on an EREW computer.

5.5 BIBLIOGRAPHICAL REMARKS

The problem o searching a sorted sequence in parallel has attracted a good deal of attention
since searching is an often-performed and time-consuming operation in most database,
information retrieval, and office automation applications. Algorithms similar to procedure
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CREW SEARCH for searching on the EREW and CREW models, as well as variations of these
models, are described in [Coraor], [Kruskal], [Munro], and [Snir]. In [Baer] a paralel
computer is described that consists of N processors connected via a switch to M memory
blocks. During each computational step several processorscan gain access to several memory
blocks simultaneously, but no more than one processor can gain access to a given memory
block (recall Fig. 1.4). A sorted sequence is distributed among the memory blocks. Various
implementations of the binary search algorithm for this model are proposed in [Baer]. A brief
discussion of how to speed up information retrieval operations through parallel processing is
provided in [Salton 17].

Several algorithms for searching on a tree-connected computer are described in
[Atallah], [Bentley], [Bonuccelli], [Chung], [Leiserson 1], [Leiserson 2], [Ottman],
[Somani], and [Song]. Some of these algorithms allow for records to be stored in all nodes of
the tree, while others allow additional connections among the nodes (such as, e.g., connecting
the leaves as a linear array). The organization of a commercially available tree-connected
computer for database applications is outlined in [Seaborn]. Also, various ways to implement
tree-connected computers in VLS| are provided in [Bhatt] and [Schmeck 1]. An algorithm
analogous to procedure MESH SEARCH can be found in [Schmeck 2]. The idea that the
propagation time of asignal alonga wireshould be taken asafunction of the length o the wire
in parallel computational models is suggested in [Chazelle] and [Thompson].

Other parallel algorithms for searching on a variety of architectures are proposed in the
literature. It isshown in [Kung 2], for example, how database operations such as intersection,
duplicate removal, union, join, and division can be performed on one- and two-dimensional
arrays of processors. Other paralel search algorithms are described in [Bora], [Carey],
[Chang], [Dewitt 1], [DeWitt 2], [Ellis 1], [Ellis 2], [Fisher], [Hillyer], [Kim], [Lehman],
[Potter], [Ramamoorthy], [Salton 2], [Schuster], [Stanfill], [Stone], [Su], [Tanaka], and
[Wong]. In[Rudolph] and[Weller] the model of computation isa so-called paralle pipeined
computer, which consistsof N components of M processors each. Each component can initiate
a comparison every 1/M units of time; thus up to NM comparisons may be in progress at one
time. The algorithms in [Rudolph] and [Weller] implement a number of variations of binary
search. Several questionsrelated to querying and maintaining fileson an MM D computer are
addressed in[Kung 17],[Kwong 1], and [Kwong 2]. Parallel hashing algorithms are presented
in [Miihlbacher]. Finally, parallel search in the continuous case is the subject of [Gal] and

[Karp].
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6.1

Generating Permutations
and Combinations

INTRODUCTION

The enumeration of combinatorial objects occupies an important place in computer
science due to its many applications in science and engineering. In this chapter we
describe a number o parale algorithms for the two fundamental problems of
generating permutations and combinations. We begin with some definitions.

Let Sbea set consisting of ndistinct items, say, the first n positiveintegers; thus
S={1,2,...,n). An m-permutationof Sisobtained by selecting mdistinct integers out
o the n and arranging them in some order. Thus for n=10 and m =4, a 4-
permutation might be (579 2. Two m-permutations are distinct if they differ with
respect to the itemsthey contain or with respect to the order of the items. The number
of distinct m-permutations of n items is denoted by "P,,, where

"P, =nl/(n —m!.

Thusfor n = 4, there are twenty-four distinct 3-permutations. Note that when m = n,
"P,=nl.

Now let X = (x{*2...%x) andy = (y, Y2...y) betwom-permutations of S. We
say that x precedesy in lexicographic order if there exists an i, 1 < i < fin, such that
x;=y; for al j<i and x; <y, The 3-permutations of {1,2,3,4} in lexicographic
order are

(123), (124, (132, (134),
(142, (143) 213, (@14,
(231, (234, 241, (243,
(312, (314, 320, (324,
341, (342, @12, @413,
421), 42 3), 431), 432).
Note that, since S= {1, 2, 3, 4}, lexicographic order coincides with increasing

1M
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numerical order. Had the elements of S been letters of the alphabet, Iexicographic
order would have been equivalent to the order used to list words in a dictionary.

An m-combination of Sisobtained by selecting mdistinct integers out o the n
and arranging them inincreasing order. Thusfor n= 6 and m= 3, one 3-combination
is(245). Two m-combinationsare distinct if they differ with respect to the items they
contain. The number of distinct m-combinations of n items is denoted by "C,, [and
sometimes (3,)], where

"C, = nl/(n —m)im!.

Thus for n = 4, there are four distinct 3-combinations. Since m-combinations are a
specia casedf m-permutations, the definition of lexicographic order applies to them as
well. The 3-combinations of {1,2, 3,4} in lexicographic order are

(123, (124, (134, (2349

It should be clear that each of the two integers "P, and "C,, can be computed
seguentially in O(m) time.

This chapter addresses the problems of generating al m-permutations and m
combinations of nitems in lexicographic order. We begin by describing a number of
sequential algorithms in section 6.2. Two of these algorithms are concerned with
generating m-permutations and m-combinations in lexicographic order, respectively.
The other algorithmsin section 6.2 implement two numbering systemsthat associate a
unique integer with each m-permutation and each m-combination, respectively. Three
parallel m-permutation generation algorithms for the EREW SM SIMD model o
computation are described in section 6.3. The first of these algorithms is a direct
parallelization of the sequential algorithm in section 6.2. It usesm processors and runs
in O("P,log m) time. The second algorithm is based on the numbering system for m-
permutations described in section 6.2 and is both adaptive and cost optimal. It uses N
processors, wherel < N < "P,,/n, and runsin O(["P,,/N1m) time. The third algorithm
applies to the case where m= n; it uses N processors, where 1 < N < n, and runsin
O('n!/N1n) timefor an optimal cost of O(n!n).Section 6.4isdevoted to two parallel m-
combination generation algorithmsfor EREW SM SIM D computers. Thefirst usesm
processors and runsin O("C,,log m) time. This algorithm is neither adaptive nor cost
optimal. The second algorithm enjoys both of these properties and is based on the
numbering system for m-combinations described in section 6.2. It uses N processors,
where 1 < N < "C,,/n, and runsin O(["C,,/Nm) time.

6.2 SEQUENTIAL ALGORITHMS

In this section we describe a number of sequential algorithms. The first algorithm
generates all m-permutations of nitemsin lexicographic order. We aso show how all
m-permutations of n items can be put into one-to-one correspondence with the
integers 1,...,"P. Two agorithms, one for mapping a given permutation to an
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integer and another that performs the inverse mapping, are described. We then move
to combination-related algorithms. Three algorithms are described: The first gen-
erates all m-combinations of n itemsin lexicographic order; the second maps a given
combination to a unique integer 1,...,"C,; and the third generates a unique
combination corresponding to agiven integer 1,...,"C,. All thealgorithms presented
in this section will then be used in our development of paralel permutation and
combination generation algorithms. We continue to assume that S= {1, 2,...,1).

6.2.1 Generating Permutations Lexicographically

Our algorithm for generating al m-permutationsof {1,2,...,n} proceeds asfollows.
Beginning with the permutation (12...m) al m-permutations are generated in
lexicographic order, until the last permutation, namely, (nn—1...n--m%+ 1), is
generated. Given{p; p,...p) thenext permutation isobtained by calling a procedure
NEXT PERMUTATION. This procedure uses a bit array u =u,, 4,...,4, 8
follows:

(i) When the procedure begins execution al the entries of u are 1.
(ii) For each element p; in thegiven permutation(p, p, ... p), if p; =j.then u;isset
to 0.
(iil) When the procedure terminates, all entries of u are 1.

In order to generate the next permutation, the procedure begins by determining
whether the current permutation is updatable. A permutation (p, p,...p) is up-
datable if for at least one of its elements p; there exists a j such that p; .<j <n and
u; = 1. Thus the only permutation that is not updatable is (nn—1...n— m+ 1).
Having determined that a permutation (p, p,...p) is updatable, the rightmost
element p; and the smallest index j for which the preceding condition holds are
located: p; is made equal to j and u; to 0. All the elements p; 1, pi+2,..., Pm tO the
right of p; are now updated. Thisisdoneasfollows: p; +, 1 < k < m— i, ismade equal
to s if u, is the kth position in u that is equal to 1. The algorithm is given as
procedure SEQUENTIAL PERMUTATIONS followed by procedure NEXT
PERMUTATION, which it cals

procedure SEQUENTIAL PERMUTATIONS (n, m)

Stepl: (1.1) (p1P2...pm) < (1 2...m)
(1.2) produce (p, ps - - - pw) &S Output
(1.3) uy, Uy, ..., u,—(1,1,...,1).

Step2 fori=1to("P, — 1)do
NEXT PERMUTATION (n, m, p,, p,, ---, Pm)
end for. [



144 Generating Permutations and Combinations

procedure NEXT PERMUTATION (N, ™, py;, P2s...,Pw)
f(pp2---om#Frnn—1...n—m+1)
then (1) for i =1tom do
u, <0
end for’
2 fen
(3) { Find the largest unused integer)
whileu, # 1do
fef-1
end while
(4) kem*1
(5)i<0
(6) { Find rightmost updatable element)
whilei =0 do
(61) ke—k -1
(6.2) u, <1
(6.3)if py < f
then { update p, }
(i) find smalest j such that
n<i<nandu;=1
(ii)yitk
(iii) pi
(iv) u, 0
else {largest unused integer is st equal to p,}
f—px
end if
end while
(7) {Updatedements to the right of p;}
for k=1tom—ido
if u, is kth postionin u that is 1
then piy s
end if
end for
(8) {Reinitidizearray u}
for k=1toido
u, «1
end for”
(9) produce (p, p,...p) asoutput
endif. O

Chap. 6

Analysis. Procedure SEQUENTIAL PERMUTATIONS consists of one
execution of step 1 requiring O(n) timeand "P,, — 1 executionsof step 2. In step 2 each
call to procedure NEXT PERMUTATION performs O(m) steps. This can be seen as
follows. Steps 1, 3, 8, and 9 take O(m) time, while steps 2, 4, and 5 require constant
time. Since only m positions of array u are 0 after step 1, both steps 6 and 7 take O(m)
steps. The overall running time of procedure SEQUENTIAL PERMUTATIONS is
O("P,,m). This behavior isoptimal in view of the fact that Q("P,,m) timeisrequired to

produce "P, lines of output, each m elements long.
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6.2.2 Numbering Permutations

We now show that a one-to-one correspondence exists between the integers1,...,"P,
and the set of m-permutations of {1,2,...,m) listed in lexicographic order. Specifi-
cally, we define a function rankp with the following properties:

(i) Let (pyp2...p) be one of the "P, m-permutations of {1,2,...,n}; then
rankp(p,, p,,---,Pm) iSan integer in {1,2,...,"P).

(i) Let (p, ps...p) and (q, g ... Q) be two m-permutations of {1, 2, ..., n);
then (p, p, ... p) precedes (¢, q, ... @) lexicographicaly if and only if
rankp(pl’ pZ’ s ,Pm) < rankp(ql’ q2: caas qm)

(iii) Let d=rankp(p,,p3s...,Pm); then (pyp,...p) can be obtained from
rankp ~!(d), that is, rankp is invertible, as can be deduced from (i) and (ii).

For the permutation (p, p,...p) define the sequence {r,, r5,...,r) asfollows:
+ i-1 1 if p;<py
ri=pi—| j; (pi<p;] wherel[p; <p;] = {O otherwise.

Thestring ry r,...1, can be seen as a mixed radix integer where

0r,<n—m,

O0<<r,. <n—m+1,

0Sr2$n—2,
O0<ri<n-—1

Expressing r, r,...r, as a decima number gives us the integer corresponding to
(p1D2...Pw):

m—1

— m—i—1
rankp(pla p2,'-'apm)= 1 + 'Zl r; rL (n'—l—.])
i= i=

Let d = rankp(py, p,...,p);, the permutation(p, p,...p) can beobtained fromd as
follows. A sequence {rl,rz,...,r,) is computed from

=Kd_1 , E[ (n—j—k )/ H (n—l— J fori=1,2,...,m

Then (p, p,...p) is defined recursively by
pi=ri+i—d; fori=12...,m

th

where d; is the smallest nonnegative integer such that

i—1
di= Y [r+i—d; <pjl
i=1




146 Generating Permutations and Combinations Chap. 6

Functions rankp and rankp~! are given below as procedures RANKP and
RANKPINV, respectively.

procedure RANKP (1, m, P P2s..., P> 4)

Step1l: fori=1tomdo
(11) de —i
(1.2) for j=1toi— 1do
if p; < p;thend—d*t 1lend if
end for
(1.3) s, p; Hd
end for.

Step2: d < s,.
Step3: i~ 1

Step4: for j=m — 1 downto 1 do
(4 ie(m—-j)xi
(4.2)d = d*(s; xi)

end for.

Step5: d—=d+1. O

procedure RANKPINV (n,m, d, p,, p2,..., P)
Stepl: ded-1.

Step2: fori=1tondo
5;<0
end for.

Step3: a+~ 1.

Step4: for i =m — 1doewnte 1 do
a«—axn—m+i)
end for.

Step5: fori=1tomdo
(5.1) b « |d/a]
(5.2) d—d—(axb)
(5.3) if n>ithena«a/(n —i)end if
(5.4) k<0
(5.5)j«0
(5.6) {Find the (b* 1)st positionin s equal to 0}
whilek <b + 1do

B j-j+1
(ii)if s; =0 then k —k + 1 end if
end while
(5.7 p«j
(5.8) 5;< 1

end for. [
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Analysis. In procedure RANKP, steps 2, 3, and 5 take constant time while
step 4 consists of a constant timeloop executed mtimes. Step 1 consists of two nested
O(m) time loops plus two constant time steps. The procedure therefore requires O(m?)
time. The running time of procedure RANKPINYV is dominated by step 5, which

requires O(mn) time.

6.2.3 Generating Combinations Lexicographically

We now givea sequential algorithm for generating all m-combinations of {1,2,...,n}
in lexicographic order. The algorithm begins by generating the initial combination,
namely (12...m). Then, every one of the "C,, — 1 subsequent m-combinations is
derived from its predecessor (¢, c,...c,) as follows. First observe that the last
combination to be generated is ((n — m+ 1)n — m+ 2)...n). A combination
(c,cy...0) is therefore updatable if for some j, 1<j<m ¢; < n—m¥j. If
(c, c,...0 is updatable, then the largest j satisfying the above condition is
determined. The next combination in lexicographic order can now be obtained by

1 incrementing c; by one, and
2 %ttlng Cj+1 — Cj+ l, Cj+z<_Cj+1 + l,...,cm<—cm_1 + 1

Thealgorithm isgiven below asprocedure SEQUENTIAL COMBINATIONSaong
with procedure NEXT COMBINATIONS which it calls.

procedure SEQUENTIAL COMBINATIONS(n, m)

Sep 1l (L.Y(cc, ...Cc) «@12...m)
(1.2) produce (c, ¢, ... C) asoutput.

Step2: fori=1to"C, — 1do
NEXT COMBINATION (0, m, c,, C,, ...,C)
endfor. [

procedure NEXT COMBINATION(n,m c,, C,, ...,C,)
Stepl: jem

Step 22 while(j > 0)do
ifc;<n—m+j
then
(21) ¢;+ c,-+ 1
(22)fori=j+1tomdo
¢, T1
end for
(2.3) produce(c, c,. ..c) asoutput
else j—j—1
end if
end while. [
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Analysis. Procedure NEXT COMBINATION scans a given m
combination once from right to left and then (from an updatable position) left
to right. This takes O(m) steps in the worst case. Procedure SEQUENTIAL
COMBINATIONS requires O(m) time in step 1 to produce the initial permutation.
Step 2 consists o "C,, — 1 iterations each of which is a cal to procedure NEXT
COMBINATION and thus requires O(m) time. The overall running time of procedure
SEQUENTIAL COMBINATIONS is O("C,m). This behavior is optimal since
Q("C,,m) steps are required to produce "C,, lines of output, each m elements long.

6.2.4 Numbering Combinations

Aswedid with m-permutations, we now show that a one-to-one correspondence exists
between theintegers1,...,"C,, and the set of m-combinations of {1,2,...,n) listed in
lexicographic order. Let (¢, c,...c,) represent one such combination (where, by
definition, ¢, < ¢, < ... <c¢,,). We define

complement(n, ¢, ¢,,...,¢,) =(d,d,...d,)
as the complement of (c, ¢, ... c,) with respect to {1,2,...,n), where
di=(n + 1) = Cm—it1-

The following function takes nand (¢, ¢, ...c,) asinput and returns (d, d,...d,,) as
output in O(m) time.

function COMPLEMENT (n, ¢4, C25-..,Cm)

Step1: fori=1tomdo
d.“—(n+ 1) — Cpoit1
end for.

Step 22  COMPLEMENT «(d, d,...d,). O
Now let the reverse of (¢, ¢, ...c,,) be given by (¢, ¢~y ... 2 ¢;). The mapping

m
order(cy, €3,...,Cp)= 3, “7IC;

i=1
has the following properties:
1. if (c, ¢;...¢c,) and (c; c;. .. c,,) are two m-combinations of {1,2,...,n} and the

reverse of (¢, ¢,...c,) precedes the reverse of (cjch...c,) in lexicographic
order, then

order(c,, ¢5,...,¢,) < order(cy, ¢5,...,Cpn);



Sec. 6.2 Sequential Algorithms 149

2 order(l, 2,...,m)=0and order(n — m+ 1),(n—m+2),...,N="C, —tim-
plying that the transformation order maps the "C, different m-combinations
onto {0,1,...,"C, — 1) while preserving reverse lexicographic order.

The following function takes (c; ¢,...C) as input and returns order
(¢i, C25--.,Cm) @S OUtPUL iN O(M?) time:

function ORDER (c,, c5,...,0)

Step 1: UM« 0.
Step 2 for i=1tomdo
sum«sumT71C,
end for.

Step 3 ORDER «sum. []

Using order and complement, we can define the following one-to-one mapping
of the "C,, possible combinations onto {1,2,...,"C,), which preserves lexicographic
ordering:

rankc(n, ¢, C, ...,c,) ="C, — order(complement(n, ¢,, c;,...,C)).

Thus ranke(n, 1, 2,...,m =1, rankc(n, 1, 2, ..., m m+ 1) =2 ..., rankc(n,
(n—m*1),(n—mt2),...,n)="C. Thefollowing procedure isan implementation
of the preceding mapping: It takes n and the combinations{c, ¢;...¢) asinput and
returns the ordinal position h of the latter in O(m?) time.

procedure RANKC (n,C,, ¢2,...,Cm N)
Step1: he'G
Step 2 (d, d;...d,) — COMPLEMENT(n, c,, c;,...,C).
Step 3 h«h— ORDERWd,, dy,...,d,). O

We now turn to the question of inverting the rankc mapping. Specifically,given
an integer h, where 1 <h<"C,, it is required to determine the combination
(cy ¢5...c,) such that ranke(n, ¢, C,, ...,G) = h. We begin by defining the inverse of
order with respect to {1,2,...,n} asfollows. Let order(c{, ¢5,...,6) =g. Then

orderinverse(n, M g) = (¢, ¢;...C)
where ¢; is equal to the largest j such that
() i<j<n and
(i) (g — ZZ'L.-H “TIC)=I1C,

Thefollowing function is an implementation of the preceding mapping. It takesn, m
and g as input and returns a combination (c, ¢;...¢) asoutput in O(mn) time.
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function ORDERINV(n, m, g)

Step 1 for i =m downto 1 do
(L)j «n
(12) ¢;«0
(L3) t«""1C;
(1.4) while (¢; = 0) do
(i) ifg=t
then¢; «j
end if
(i) te(tx (G —i)yj
dip 5oy
end while
(1.5) geg~"1C;
end for.

Siep2 ORDERINV «(¢; C,. ..c,). O
We are findly in a position to define the inverse of rankc. If rankc(n, ¢,
C, ...,Cyn) = h, then
rankc~1(n, m h) = complement(n, orderinverse(n, m "C,, — h).
The following procedure RANKCINV takes n, m and h as input and returns the
combination (c, ¢, ...c¢,) as output in O(mn) time.
procedure RANKCINV(n, m, h, ¢, ¢;,...,0)
Stept (4, d,...d,)—ORDERINV(n, m, "C,,—h).
P2 (c; ¢y...Cn)~COMPLEMENT(n, d,, d,,....d,). L[]

6.3 GENERATING PERMUTATIONS IN PARALLEL

We set the stage in the previous section to address the problem of generating
permutations in paralel. Our first algorithm is a parallel version of the algorithm in
section 6.2.1.

6.3.1 Adapting a Sequential Algorithm

We begin by making a few observations regarding procedure NEXT PERMU-
TATION.

1. Given an m-permutation (p, p, ... p.) the procedure first checks whether it is
updatable.

2. If the permutation is updatable, then its rightmost element p,, ischecked first to
determine whether it can be incremented; if it can, then the procedure
increments it and terminates.
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3. Determining whether p, can be incremented requires scanning no more than m
positions of array u whose entries indicate which of the integers {1,2,...,n}
currently appear in{p, p,...p) and whichdo not. Thisscanning also yields the
new value of p, in case the latter can be incremented.

4. If the rightmost element cannot be incremented, then the procedure finds the
first element to theleft of p, that issmaller thanits right neighbor. Thiselement,
cal it p, is incremented by the procedure and all elements to its right are
updated.

5. Determining the new value of p, requires scanning no more than m positions
o u.

9. Updating all positionsto theright of p, requires scanning no more than the first
m positions of u.

These observationsindicate that the algorithm in section 6.2.1 lendsitself quite
naturally to parallel implementation. Assume that m processors are available on an
EREW SM SIMD computer. We give our first parallel m-permutation generator as
procedure PARALLEL PERMUTATIONS. The procedure takes n and mas input
and producesall "P,, m-permutations of {1,2,...,n). It assumes that processor P; has
access to position i of an output register where each successive permutation is
produced. There are three arrays in shared memory:

1. p= pi, P3,---» P> Which stores the current permutation.

2. U=uy, uy,...,u,, Wherey, =0 if i isin the current permutation (p, p, ... p,);
otherwise u; = L Initially, u; = 1for 1 <i <n.

3. X =Xy, X3,---, X, is USed to store intermediate results.

Procedure PARALLEL PERMUTATIONS also invokes the following four
procedures for EREW SM SIMD computers:

1. Procedure BROADCAST (a,m x) studied in chapter 2, which usesan array
X1, X2,..., X, to distribute the value d a to m processors Py, P,,...,P,.

2. Procedure ALLSUMS (x4, X,,..., X,) asostudied in chapter 2, which usesm
processors to compute the prefix sums of the array x,, x5, ..., X, and replace x; with
x;+x, T+ xfori<i<n

3. Procedure MINIMUM (x,, x,,...,X%,) givenin what follows, which uses m
processors to find the smallest element in the array x,, x3,..., x, and return it in x;:

procedure M INIMUM (X, , X35+, Xpm)

for j=0to(logm — 1) do
for i=1tomin step of 2/*! doin paralld
(1) P;obtains x;.,s through shared memory
(2) if Xix2s < X; then x; < x4 55 end if
end for
end for. O
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4. Procedure MAXIMUM (x,, X,,...,X,), which uses m processors to find the
largest element in the array x;, x,,...,X, and return it in x,. This procedure is
identical to procedure MINIMUM, except that step 2 now reads

if ;.2 >x thenx, «x; 2 endif.

5. Procedure PARALLEL SCAN (p,, n), which is helpful in searching for the
next available integer to increment a given element p, of an m-permutation
(D1 P2..-pm) OF {1,2,...,n). Given p, and n, array u in shared memory is used to
determine which of them integersp, + 1, p, + 2,..., p, T msatisfy the two conditions
of

(i) being smaller than or equal to n and
(i) being not presentin(p;p,...p)

and are therefore available for incrementing p,. Array x in shared memory is used to
keep track of these integers.

procedure PARALLEL SCAN (p,, n)

for i = 1 tomdoin paralld
if p+i<nandu,,;=1
then x,«—px'l'i
ese x; +
end if

end for. O

From chapter 2 we know that procedures BROADCAST and ALLSUMS run
in O(log m) time. Procedures MINIMUM and MAXIMUM clearly require O(log m)
timeaswell. Procedure PARALLEL SCAN takes constant time. We are now ready to
state procedure PARALLEL PERMUTATIONS:

procedure PARALLEL PERMUTATIONS (n, m)

Step 1: (1.1) for i =1 tomdoin parallel
(@ Al
(i) produce p; as output
end for
(2.2) {Initialize array u}
for i =1to[n/m] do
forj=1tomdoin paralld
(D ke=@G—=Dm+j
(ii) if k < nthen u, « Lend if
end for
end for.
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Step 2 fort=1to(*P, — 1)do
(21) for i=1tomdoin parald
u, <0
end for

(2.2) {Check whether rightmost element of (p,p, ...p,) can be in-
cremented; ie., if there is a j, p, <j<n, such that j# p, for
Il<ksm—1j
(i) BROADCAST (p,,, m X)

(ii) PARALLEL SCAN (p,., n)

(2.3) {If several j satisfying thecondition in (2.2)arefound, the smallest is

assigned to p}
(1) {The smallest of the x; is found and placed in x,}
MINIMUM (xy, X,; -+, %)
(i) if x, # oo then (a) u, «1
(b) Pmm‘_ Xy
© kem—1
ad if (d) Go to step (2.7)

(2.4) { Rightmost element cannot beincremented; find rightmost element
Pi such that p, < pys 1}
(i) for i=1tom— 1doin paralld
if p; < p;4+qthen x; < i
. deex;« -1
end if

end for

(i) { The largest of the x; isfound and placed in x,}
MAXIMUM (x;, x3,...,Xp)
(i) ke x,
(iv) BROADCAST (k, m, x)
(v) BROADCAST (py, m x)
(2.5) {Increment p,: the smallest available integer larger than py is
assigned to py}
(i) for i = ktomdo in paralld
u,,]«—l
end for
(i) PARALLEL SCAN (py, N)
(@iii)) MINIMUM (x4, X3,...,Xp)
iv) pe < x4
v) u,,k<—0
(2.6) { Find thesmallest m — kintegers that are available and assign their
values to py+y, Pr+2:---5 Py respectively. This reduces to finding
the first m— k positions of u that are equal to 1}
(i) for i = 1to mdo in paralld
X Uy
end for
(ii) ALLSUMS (x, X3,...,%Xp)
(iii) for i = 1 tomdo in paralld
ifx,<m-kland y; =1
thm pk+x,- i
end if
end for
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(2.7) {Clean up array u and output current m-permutation)
(i) for i=1tok doin paralld
upi<—1
end for
(ii) for i =1tomdoin paralld
produce p; as output

end for

end for. O

Analysis. Step 1 takes O(n/m) time. There are "P, — 1 iterations of step 2,
each requiring O(log m) time, as can be easily verified. The overal running time of
PARALLEL PERMUTATIONS is therefore O("P,,log m). Since m processors are
used, the procedure's cost is O("P,,mlogm).

Example 6.1

We illustrate the working o procedure PARALLEL PERMUTATIONS by showing
how a permutation is updated. Let S= {1,2,3,4, 5} and let{p; p» p2 ps) = (514 3) bead-
permutation to be updated during an iteration of step 2. In step 2.1 array u isset up as
shown in Fig. 6.1(a). In step 22, p, = 3 is broadcast to all four processors to check
whether any of theintegersp, + 1, p. + 2, p, + 3,and p, T 4isavailable. The processors
assign valuesto array x asshown in Fig. 6.1(b). Thisleads to thediscovery in step 2.3 that
P4 Cannot beincremented. In step 2.4 the processors assign values to array x to indicate
the positions of those elements in the permutation that are smaller than their right
neighbor, as shown in Fig. 6.1(c). Thelargest entry in x isdetermined to be 2; this means
that p, isto beincremented and all the positionsto itsright areto be updated. Now 2 and
p, are broadcast to thefour processors. In step 25 array u is updated to indicate that the
old valuesof p,, p,, and p, are now available, as shown in Fig. 6.1(d). The processors now
check whether any of the integers p, + 1, p, + 2, p, + 3, and p, + 4 is available and
indicatetheir findings by setting up array x asshownin Fig. 6.1(e). Thesmallestentry in x
isfound to be 2 p, isassigned thevalue 2and u, isset to 0, asshown in Fig. 6.1(f). In step
26 thesmallest two available integers arefound by setting array x equal to thefirst four
positions of array u. Now procedure ALLSUMS is applied to array x with the result
shown in Fig. 6.1(g). Sincex, <4 — 2and u; =1, p,,, isassigned thevalue 1. Similarly,
sincex; =4 - 2and u; =1, p, ., isassigned the value 3. Finaly, in step 2.7 positions 2
and 5 of array u areset to 1 and the 4-permutation (p, p, ps ps) = (521 3) is produced as
output. []

Discussion. We conclude this section with two remarks on procedure
PARALLEL PERMUTATIONS.

1. The procedure has a cost of O("P,,m|og m), which is not optimal in view of the
o("P,,m) operations sufficient to generate all m-permutations of n items by
procedure SEQUENTIAL PERMUTATIONS.

2. The procedure is not adaptive as it requires the presence of m processors in
order to function properly. As pointed out earlier, it is usualy reasonable to
assume that the number of processors on a shared memory parallel computer is
not only fixed but also smaller than the size of the typical problem.



Sec. 6.3 Generating Permutations in Parallel 155

1 2 3 4
X oo oo oo oo
®)
1 2 3 4
X -1 2 -1 -1
()
1 2 3 4 5
u 1 1 1 1 0
@
1 2 3 4
X 2 3 4 oo
©)
1 2 3 4 5

o
1 2 3 ‘
X 1 1 2 3 Figure 61 Updating permutation using
procedure PARALLEL PERMUTA-
& TIONS.

The preceding remarkslead naturally to the following questions:
1. Can a paralld permutation algorithm be derived that uses N processors, where
1<N<"P?
2. Would the algorithm be cost optimal?

These two questions are answer ed affirmatively in the following section.
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6.3.2 An Adaptive Permutation Generator

In this section we describe an adaptive and cost-optimal parallel algorithm for
generating all m-permutations o {1,2,..., n). The algorithm isdesigned to run on an
EREW SM SIM D computer with N processors P,, P,,...,P, wherel <N 6 "P,,. It
makes use of procedure NEXT PERMUTATION and RANKPINV described in
section 6.2. Theidea of the algorithm isto let each processor generate a subset of the
permutations lexicographically. Furthermore, all the permutations generated by P;
precede in lexicographic order those generated by P;,;, 1 <i < N. Thus P; begins
with the jth permutation, wherej = (i — 1)["P,,/N1 T 1, and then generates the next
["P,/N1— 1 permutations. The agorithm is given as procedure ADAPTIVE
PERMUTATIONS:

procedure ADAPTIVE PERMUTATIONS (n, m)

fori=1toN doin paralld
() j(i— DI"Py/N1T1
(2)if j < "P,, then
(2.1) RANKPINV (1, m, j, p1, P2s..., Pm)
(2.2) produce the jth permutation (p,p;...p,) &s output
(2.3)fori=1to["P,/NT1— 1do
NEXT PERMUTATION (n, m, py, 3, ..., Pm)

end for
end if
end for. O

Analysis. Step 1 requires O(m) operations. Generating the jth permutation
in step 2.1 takes O(mn) operationsand producing it asoutput in step 2.2 another O(m).
There are ["P,,/N] — 1 iterations of step 2.3 each involving O(m) operations. The
overdl running time of procedure ADAPTIVE PERMUTATIONS is therefore
dominated by the larger of O(mn) and O(["P,,/N1m). Assumingthat n < ["P,,/N1, that
is, 1 < N < "P,,/n, the procedure runsin O(["P,,/N 1m) time with an optimal cost o
O("P,,m).

Three points are worth noting regarding procedure ADAPTIVE PERMU-
TATIONS.

The first two are:

1. Once the values of n and m are made known to al the processors, using
procedure BROADCAST, say, the shared memory is no longer needed. Indeed
the processors, once started, independently execute the same algorithm and
never need to communicate among themselves.

2. Steps 2.1-2.3 may not be executed at all by some processors. Thisis illustrated
by the following example.
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Example 6.2

Letn =5m = 3,and N = 13. Thus["P, /N1 = [$9] = 5. Processor P, computesj =1,
uses procedure RANKPINV to generate the first permutation in lexicographic order,
namely, (12 3),and then calls procedure NEXT PERMUTATION four timesto generate
(124),(125),(132),and (134). Simultaneously, P, generates thesixth through the tenth
permutations, namely, (135),(142),(143),(145), and (152). Smilarly, P3, P, ..., Py,
each generatesfive 3-permutations. Asfor P, ,, it computesj= 12 x 5+ 1 = 61, findsit
larger than *P,, and consequently does not execute steps 2.1-2.3. [

The third point regarding procedure ADAPTIVE PERMUTATIONS is

3 Although step 2.3 isiterated ["P,,/NT — 1 times by the processors that execute
it, fewer permutations than this number may be generated. Thisisillustrated by
the following example.

Example 6.3
Again let n =5 and m = 3 but this time assume that N = 7. Thus [*P,/71 = 9. Each of
processors Py, ..., Pe generates nine 3-permutations. Processor P, however, generates
only sx 3-permutations, namely, the fifty-fifth through the sixtieth. During each of the
final three iterations of step 2.3 executed by P,, procedure NEXT PERMUTATION
detects that (p; p, p5) =(543), that is, the last permutation has been reached, and
consequently does nothing. [

6.3.3 Parallel Permutation Generator for Few Processors

Sometimesonly few processorscan be used to generate all m-permutations of nitems.
Assume, for example, that N processors are available, where 1 < N < n A surpris-
ingly ssimple parallel algorithm can be developed for thissituation. The algorithm runs
on an EREW SM SIMD computer and is adaptive and cost optimal. Unlike
procedure ADAPTIVE PERMUTATIONS, however, it does not make use of the
numbering system of section 6.2.2. We illustrate the algorithm for the special case
where m = n, that is, when all n! permutations of nitems are to be generated.

Lee S={1,2,...,n, as before, and consider the permutation
(12...i—1ii*+ 1...n)of S. Foreachi, 1 <i < n,ann — 1 permutation is defined as
follows:

A2...i—1lii+1l..m)—i=12...i—1i+1...n).

For ease of presentation, we begin by assuming that N = n, that is, that there are
as many processors available asitems to permute. The ideaisto let processor P;, for
1<i<n, begin with the permutation (i12...i—1i+ 1...n) and generate all
subsequent permutations in lexicographic order, which have i in the first position.
There are exactly (n — 1)! such permutations.
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In general, for N processors, where1 < N < n, each processor generates fn!/N1
permutations. In other words, each processor does the job of {#/N7 processors in the
informal description of the previous paragraph. The algorithm is given as procedure
FULL PERMUTATIONS:

procedure FULL PERMUTATIONS (n)

for j=1to N doin parald
fori=(— 1){n/N]+ 1toj[n/N]do
if | < nthen
(D)1 Py pu—)=(Q2...i=1ii+1...n)—i
(2) produce (i py p; ... pa-1) @ oOutput
(3)for k=1to((n—1)! — 1) do
NEXT PERMUTATION (n,n, i, py, Pay---sPas)
end for
end if
end for
end for. O

Analysis. Procedure NEXT PERMUTATION s called [rn/N1[(n—1)! —1]
times, each call requiring O(n) steps to generate a permutation. Steps1and 2 are aso
executed [n/N( times and require O(n) time. The overal running time of procedure
FULL PERMUTATIONS is therefore

t(n) = O([n!/Nn).
Since p(n) = N, the procedure has an optimal cost o c(n) = O(n!n).

6.4 GENERATING COMBINATIONS IN PARALLEL

We now turn to the problem of generating dl "C,, m-combinations of S = {1,2,...,n}
in lexicographic order. On the surface, this may appear to be a specia case of the
problem addressed in the previous section; indeed each m-combination is an m-
permutation. It is not clear, however, how an agorithm for generating m
permutations, such as procedure PARALLEL PERMUTATIONS, for example, can
be made to efficiently generate combinations only. It appears therefore that a special
approach will have to be developed for this problem. In this section we describe two
algorithms for generating m-combinations in parallel. Both algorithms are designed to
run on the EREW SM SIMD model of computation.

6.4.1 A Fast Combination Generator

We begin by restating the following properties of m-combinations of n items, listed in
lexicographic order.
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Property 1. For 1< m< n, the first combination in lexicographic order is
(12...m),and thelast oneis(n—m+1n-m+2...n).

Property 2. Denote the last combination by (x,Xz...x,). If (y,Yz...y) is
one o the other possible combinations, then

)y, <y <...<ypand y; < x;for L <i<m.

(ii) If thereisasubscripti, 2<i < m,such that al y's from y; to y, equal x; to x,,
respectively,and y; -, < x;_,, then the next successive combination is given by
(V1 y3---Ym) Where y;=y; for 1<j<i—2, and yj=y,_,+j—i+2 for
i—1<j<m Otherwise, the next successve combination is given by
1Yz Ymo1Im+ 1)

The preceding discussion leads naturally to our first paralel combination
generator. The first combination generated is (12...m). Now, if (y,y,...Y,) isthe
combination just generated, then the next successivecombination isgiven by property
2(ii). The algorithm uses five arrays b, c, x, y, and z, each do length m, in shared
memory. The ith position of each of these arrays is denoted by b;, c¢;, x;, y;, and z,,
respectively. The first of these arrays, array b, is used for broadcasting. Array c is
simply an output buffer where every new combination generated is placed. The last
three arrays are used to store intermediate results:

1 Array x holds the last combination, namely,
x;=h—m+i for 1 <ig<m

2 Array y holds the current combination being generated.

3 Array z keeps track of those positions in y that have reached their limiting
values, thusfor 1 <i<m

true If Vi = X5,
z: = |[fdse otherwise.

The agorithm is given in what follows as procedure PARALLEL
COMBINATIONS. It uses m processors Py, P,,...,P, and invokes procedure
BROADCAST.

procedure PARALLEL COMBINATIONS(n, m)

Step 1. {Initidization)
for i=1tomdoin paralld
(1) x;«n—mi

(1.2) y; «i
(1.3) if y; = x; then z; « true
elsez; « false

end if

(1.4) ¢; «i

end far.
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Step 22 {The valued z, if broadcast}
BROADCAST (z,, m, b).

Step 3 whilez, =false do
B k<o
(3.2) {Find rightmost element of current combination that has not reached its
limiting value}
for i=2tomdoin paralld
if z;_, =falseand z; = true
then (i) yio, < yi- +1
(i) kei
end if
end for
(3.3) BROADCAST (k, m, b)
(3.4) {If no element hasreached itslimitingvalue, incrementy, otherwiseupdate
al elementsfrom y, to y,.}
if k=0theny, «y, T1
else (i) BROADCAST (y,-, m, b)
(i) for i = kto m do in paralle
Vi V-1 +(i—k+1)
end for
end if
(35) for i = 1tomdoin paralld
(i) ¢; <y
(i) if y; = x; then z; = true
else z; =false
end if
end for
(3.6) BROADCAST (z;, m, b)
end while. O

Note that step 3.1isexecuted by one processor, say, P,. Also, in step 3.2 at most
one processor finds z;_; = falseand z; = trueand updates y;_, and k. Finally in the
then part of step 3.4 only one processor, say, P, incrementsy,

Analysis. Stepsl, 3.1, 3.2, and 35 take constant time. I n steps 2, 3.3, 3.4,and
3.6 procedure BROADCAST requires O(log m) time. Since step 3isexecuted ('C, — 1)
times, the overall running time of procedure PARALLEL COMBINATIONS is
O("C,,log m), and its cost O("C,,mlogm), which is not optimal.

Example 6.4

The behavior of PARALLEL COMBINATIONS is illustrated in Fig. 6.2 for the case
wheren = 5 and m = 3. The figure shows the contents of each o thearraysy, z,and c as
wdl as the value o k after each step of the procedure where they are modified by an
assignment. Note that t and f represent true and false, respectively. Also,
{x; x, X,) = (345) throughout. [



AFTERSTEP  y. 'y, y, z, 2z, 2, ¢ C Cq K

1 1 2 3 £ f  f 1 2 3
3.1) 0
3.4) 1 2 4

5) T T 2 4
(3.1) 0
(3.4) 1 2 5
(3.5) £t ot 1 2 5
3.1) 0
3.2) 1 3 5 3
(3.4) 1 3 4
(3.5) ff ot 1 3 4
(3.1) 0
(3.4) 1 3 5
(3.5) £t 1 3 5
@3.1) 0
(3.2) 1 4 5 3
(3.4) 1 4 5
(3.5) £t ot 1 4 5
3.1) 0
(3.2) 2 4 5 2
(3.4) 2 3 a4
(3.5) f f f 2 3 4
(3.1) 0
(3.4) 2 3 5
(3.5) f f t 2 3 5
(3.1) 0
(3.2) 2 4 5 3
(3.4) 2 4 5
(3.5) f t t 2 4 5
(3.1) 0
(3.2) 3 4 5 2
(3.4) 3 4 5
(3.5) t t t 3 4 5

Figure 62 Generating combinations of three out of five items using procedure
PARALLEL COMBINATIONS.
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Discussion. When stating desirable properties of algorithms in chapter 2,
we said that

(i) a parallel algorithm should be adaptive, that is, capable of modifying its
behavior according to the number of processors actually available on the
parallel computer being used,

(i) its running time should vary with the number of processors used, and

(iii) its cost should be optimal.

Procedure PARALLEL COMBINATIONS does not satisfy any of the preceding
criteria:

(i) It requires the availability of m processors.
(i) Although quite fast, its running time does not decrease with an increasing
number of processors.

(iii) Itscost exceedsthe O("C,,m) operationssufficient to generate all mcombinations
of n items by procedure SEQUENTIAL COMBINATIONS.

The purpose of the next section is to exhibit an algorithm satisfying these three
desirable properties.

6.4.2 An Adaptive Combination Generator

We conclude our treatment of combination generators by describing an adaptive and
cost-optimal parallel algorithm for generating all m-combinations of {1, 2,...,n}. The
algorithm isdesigned to run on an EREW SM SIM D computer with N processors P,
P,,...,Py,wherel < N <"C,,. It makes use of proceduresNEXT COMBINATION
and RANKCINYV described in section 6.2. The idea of the algorithm is to let each
processor generate a subset of the combinations lexicographically. Furthermore, al
the combinations generated by P, precede in lexicographic order those generated by
Pivi, 1 <i<N. Thus P; begins with the jth combination, where j=
(i— 1)["C,/N1*t 1 and then generates the next ["C,,/N] — 1 combinations. The
algorithm, which is similar to the one in section 6.3.2, is given as procedure
ADAPTIVE COMBINATIONS:

procedure ADAPTIVE COMBINATIONS (n,m)

fori=1toN doin paralld
(1) j«li = 1) ["Ca/NT T 1
(2) if j < "C,, then
(2.1) RANKCINV (n,m,j,c,, €2...,C,)
(2.2) produce the jth combination (c, ¢2...c,) asoutput
(2.3)fori=1to["C, /N1 - 1do
NEXT COMBINATION (n, m,c,, ¢z,...,C,)
end for
end if
end for. [
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Analysis.  Step 1 requires O(mj operations. Generating the jth combination
in step 2.1 takes O(mn) operations and producing it as output in step 2.2 another
O(mn). Each of the ["C,,/N] — 1 iterations of step 2.3 involves O(m) operations. The
overall running time of procedure ADAPTIVE COMBINATIONS is therefore
dominated by thelarger of O(mn) and O(I"C,,/N Im). Assuming that n < [*C, /N1, that
is 1< N <£"C,/n, the procedure runsin O(f"C,,/NIm) time with an optimal cost of
o("C,m).

The three comments made in section 6.3.3 regarding procedure ADAPTIVE
PERMUTATIONS are also valid here:

1 The shared memory is only needed to broadcast n and m.
2 Steps 2.1-2.3 may not beexecuted at all by some processors.
3 Fewer than [*C,,/N1 — 1 combinations may be generated in step 2.3.

Example 6.5

Lee n=7, m=1, and N=35. Then ['C,/5] = 2. Processor P, computes j=1 and
generates the first two combinations. Processors P, and P; compute j =3 and j =5,
respectively,and each generatesan additional two combinations. Processor P, computes
j = 7 and succeeds in generating the one and last combination. Processor P computes
j=9and since 9 > 7C,, it does not execute step 2. [

6.5 PROBLEMS

6.1 In procedure PARALLEL PERMUTATIONS, the processors make extensive use of the
shared memory to communicate. Design a parallel algorithm for generating al m
permutations of n items in O("P,logm) time using m processors that never need to
communicate (through shared memory or otherwise). Once the values of n and m have
been made known to the processors, the latter operate independently and generateall *P,,
permutations lexicographicaly.

62 Once the agorithm in problem 6.1 has been developed, it is not difficult to make it
adaptive. Given N processors, 1 < N < "P,,, the modified algorithm would run in
O("P,,mlogm/N) time, which would not be cost optimal. On the other hand, procedure
ADAPTIVE PERMUTATIONS is both adaptive and cost optimal. Design an adaptive
and cost-optimal parallel algorithm for generating permutations that uses neither the
shared memory nor the numbering system of section 6.2.2.

63 Isit possibletodesign a parallel algorithm for generatingall m-permutationsof nitemson
the EREW SM SIMD model of computation in O("P,,) time using m processors?Would
the permutations be in lexicographic order?

64 Procedure ADAPTIVE PERMUTATIONS is cost optimal only when the number of
processors N liesin therange 1 < N < "P,,/n. Can the procedure be modified (or a new
procedure designed) to extend thisrange of optimality?1stherea parallel algorithm that is
cost optimal for all valuesof N from 2 to "P,,?

65 Canyougenerdize procedure FULL PERMUTATIONS to generateall m-permutations,
where mcan take any value from 1 to n?

66 Consider the sorting networks described in chapter 4. These networks can be used as
permutation generators as follows. Let S ={1,2,3,4,5} and assume that we wish to
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generate the permutation (5321 4) from the initial permutation (12 345). We begin by
assigning each integer in the initial permutation an index (or subscript) indicating its
position in thedesired permutation. Thisgives(1, 2, 3, 45 5,). The sequence of indices can
now be sorted on a sorting network: When two indices are to be swapped, each carriesits
associated integer along. Theresult is (5, 3, 25 1, 45) as required. For agiven n, can al n!
permutations be generated in thisfashion? Would they bein lexicographic order? Analyze
the running time, number of processors, and cost of your algorithm.
6.7 Repeat problem 6.6 for each of the interconnection networks described in chapter 1.

6.8 Isthereany advantageto using theapproach in problem 6.6 on the shared-memory SIMD
model of computation? How would the resulting algorithm compare with thosein section
6.3?

6.9 A permutation network isacircuit that is hard wired to effect a particular permutation of its
input. It takesn inputs and produces n outputs. An example of a permutation network for
n =4 isshown in Fig. 6.3. For input (1 2 3 4) the network produces (24 1 3). Feeding
(2413) back into the network (using the dotted lines) yields (4321). Repeating the
processyields (314 2) and then (1 23 4),that is, the origina permutation. This means that
the network in Fig. 6.3 iscapable of producing only four of the twenty-four permutations
of four items. Can you design a network capable of generating all permutations?

6.10 The permutation network in Fig. 6.3 isan example of a single-stage network. A two-stage
network isillustrated in Fig. 6.4 for n = 4. In general, multistage networks can bedesigned.
How many permutations does the network of Fig. 6.4 (with feedback as shown in dotted
lines) generate? Can you design a network capableof generating all 4! permutations? How
many stages would it have?

6.11 Modify procedure PARALLEL COMBINATIONS to run using N processors, where
1<N<m Show that the running time of the modified procedure is
o("C,(m/N * log N)), which is cost optimal for n < m/log N.

6.12 In procedure PARALLEL COMBINATIONS, the processors make extensive use of the
shared memory to communicate. Design a paralel algorithm for generating al m-
combinations of » items in O("C,,log m) time using m processors that never need to
communicate (through the shared memory or otherwise). Once the value of n and m have
been made known to the processors, the latter operate independently and generate all "C,
combinations lexicographically.

Figure6.3 Permutation network.
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Figure 64 Twodage permutation

network.

6.13 Once the algorithm in problem 6.12 has been developed, it is not difficult to make it

6.14

6.15
6.16

6.17

6.18

adaptive. Given N processors, 1< N < *C,,, the modified agorithm would run in
o("C,,mlogm/N) time, which would not be cost optimal. On the other hand, procedure
ADAPTIVE COMBINATIONS s both adaptive and cost optimal. Design an adaptive
and cost-optimal parallel algorithm for generating combinations that uses neither the
shared memory nor the numbering system in section 6.2.4.

Isit possibletodesign a parallel agorithm for generating all m-combinations of nitemson
the EREW SM SIMD model of computation in 0(*C,,) time using m processors?Would
the combinations be in lexicographic order?

Establish the validity of property 2 in section 6.4.1 by induction on the index i.
Procedure ADAPTIVE COMBINATIONS is cost optimal only when the number of
processors N liesintherange 1 < N < *C,,/n. Can this procedure be modified (or a new
procedure designed) to extend thisrange of optimality?1stherea parallel algorithm that is
cost optimal for al values of N from 2 to "C?

An n-permutation of {1, 2,...,r} issaid to beaderangementif for eachi, 1 < i < n, integer
i does not appear in position i in the permutation. Thus for n =5, (25431) is a
derangement. In all there are

at(1- Q1+ @2y —... T (=01/nY)

derangements of n items. Design a parallel algorithm to generate derangements and
analyze its running time, number of processors used, and cost.

Given an integer n, it is possibleto represent it as the sum of one or more positive integers
a;:

n=a,+a;+---+a,

This representation is called a partition if the order of the g; is of no conseguence. Thus
two partitions of an integer n are distinct if they differ with respect to the a; they contain.
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For example, there are seven distinct partitions of the integer 5
54+ 1,3+2,3+1+0L,2+2+5,2+14+14+1,1+14+1+1 410

Design a parallel algorithm for generating al partitions of an integer n.
619 For a given integer n, the representation

n=a, +a,+ - +a,

issaid to be a composition if the order of the ¢, isimportant. Thus two compositions of an
integer n aredistinct if they differ with respect to the a; they contain and the order in which
the a; are listed. For example, there are sixteen compositions o theinteger 5.

54+ 1, 1+4,3+2,2+3,3+14+1, 14+3+1, 14143, 2+2+1,24+1+42,
1+242 2414141, 1+2+14+1, 1+1+2+1, 1+14+1+2,
I+1+1+14 1L

Design a parallel algorithm for generating all compositions of an integer n.

620 A partition (or composition)a, * a, +... *+ a, of aninteger nissaid to berestricted if the
valued misgiven. Thus, form = 2, thereare two partitionsdf theinteger 5, namely, 4 +1
and 3+ 2, and four compositions, namely, 4+ 1,1 + 4, 3+ 2, and 2+ 3. Design parallel
algorithms that, for given nand m, generate all restricted partitions and al restricted
compositions, respectively.

6.6 BIBLIOGRAPHICAL REMARKS

The problem of generating permutations has a long history, and dozens of sequential
algorithmsexist for its solution. This history istraced in[Sedgewick] along with areview of the
different approaches. A sequential algorithm, different from the one in section 6.2.1, for
generating all m-permutations of n items is described in [Rohl]. The numbering system in
section 6.22 is based on ideas from [Knott 2. Many sequential agorithms have also been
proposed for generating all m-combinations of n items. A number of these are compared in
[Akl 2]. The combination generator (section 6.2.3) and numbering system (section 6.2.4) are
based on ideas from [Mifsud] and [Knott 1], respectively.

There has been surprisingly little reported in the literature on fast generation of
permutations and combinations in parallel. The algorithm in section 6.3.1 is based on that in
section 621, and neither has appeared elsewhere. Both procedures ADAPTIVE
PERMUTATIONS and FULL PERMUTATIONS are from [Akl 3]. An adaptive but not
cost-optimal parallel algorithm for generating all "P,, permutationsis described in [Gupta]. It
runs on an EREW SM SIMD computer with N processors, 1 <N g"P, in
O(["P,,/NTmlogm) time. Other algorithms are described in [Chen] and [Mor].

Another approach to generating m-permutations is through the use of so-caled
permutation networks. Examples of such networks are provided in [Benes], [Clos], [Golomb],
[Lawrig], [Lenfant 1], [Lenfant 2], [Nassimi 2], [Nassimi 3], [Orcutt], [Siegd], and [Wu].
Some permutation generators are application dependent: They generate only those per-
mutations that are needed to solve the problem at hand. Some of these are described in
[Batcher], [Fraser], [Nassimi 1], and [Peasg]. The two approaches mentioned in this
paragraph are restricted in at least one of the following three ways
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1 They are based on a hard-wired interconnection o a predefined number of processors
that can generate permutations for a fixed-size input only.

2 They are capable of generating only a subset of all possible permutations.

3 They typically require O{n) processors and O(log®n) steps, wherea = 1, to generate one
permutation of an input o length n: All permutations are therefore generated in
O(n! log®n) steps for a cost o O(n! nlog®n), which is not optimal.

By contrast the algorithms in sections 6.3.2 and 6.3.3 are

1. adaptive, that is, the number of available processors bears no relation to thesize of the
input to be permuted;

2 capable of generating all possible permutations of a given input; and

3 cost optimal.

Procedure PARALLEL COMBINATIONS is based on an algorithm in [Chan], while
procedure ADAPTIVE COMBINATIONS isfrom [Akl 3]. Sequential algorithmsfor generat-
ing derangements, partitions, and compositions are given in [Akl 1] and [Page]. Other
problems involving the generation of combinatorial objectsfor which no parallel agorithms are
known are described in [Liu], [Nijenhuis], and [Reingold].
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Matrix Operations

7.1 INTRODUCTION

Problems involving matrices arise in a multitude of numerical and nonnumerical
contexts. Examples range from the solution of systems of equations (see chapter 8) to
the representation of graphs (see chapter 10). In this chapter we show how three
operations on matrices can be performed in paralel. These operations are matrix
transposition (section 7.2), matrix-by-matrix multiplication (section 7.3), and matrix-
by-vector multiplication (section 7.4). Other operations are described in chapters 8
and 10. One particular feature of this chapter is that it illustrates the use of al the
interconnection networks described in chapter 1, namely, the one-dimensional array,
the mesh, the tree, the perfect shuffle, and the cube.

7.2 TRANSPOSITION

An n x n matrix A is given, for example:

AT — @iz dyp Q33 Ay
;3 Qy3 (33 0443
A1a Q34 Q34 Qaa
In other words, every row in matrix A isnow acolumnin matrix AT. Theelementsof A
are any data objects; thus a;; could be an integer, a real, a character, and so on.
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Sequentially the transpose of a matrix can be computed very easily asshown in
procedure TRANSPOSE. The proceduretransposes A in place, that is, it returnsATin
the same memory locations previously occupied by A.

proosdure TRANSPOSE (A)

fori=2tondo
fori=1toi—1do
Qi > ay;

ad for

edfor. [

This procedure runs in O(n?)time, which isoptimal in view of the R(n?)steps required
to simply read A.

I'n thissection we show how the transpose can be computed in parallel on three
different models of paralel computation, namely, the mesh-connected, shuffle-
connected, and the shared-memory SIMD computers.

7.2.1 Mesh Transpose

The parallel architecture that lends itself most naturally to matrix operationsis the
mesh. Indeed, an n X n mesh of processors can be regarded as a matrix and is
therefore perfectly fitted to accommodate an n x n data matrix, one element per
processor. Thisis precisely the approach we shall use to compute the transpose of an
n x nmatrix A initially stored inann x nmesh of processors, asshown in Fig. 7.1 for
n=4. Initially, processor P(i,j) holds data element a;; at the end of the
computation P(,j) should hold a;. Note that with this arrangement Q) is a
lower bound on the running time of any matrix transposition algorithm. This isseen
by observing that a,, cannot reach P(n, 1) in fewer than 2n — 2 steps.

The idea of our algorithm is quite simple. Since the diagonal elements are not
affected during the transposition, that is, element a,, of A equals element a,,dof AT, the
datain thediagonal processors will stay stationary. Those below the diagonal are sent
to occupy symmetrical positions above the diagonal (solid arrows in Fig. 7.1).
Simultaneously, the elements above the diagonal are sent to occupy symmetrical
positions below the diagonal (dashed arrows in Fig. 7.1). Each processor P(i,j) has
three registers:

1 A(,])is used to store g;; initially and a; when the algorithm terminates;

2 B(i,j)isused to store datareceived from P(,j + 1) or P(i — 1,]),that is from its
right or top neighbors; and

3 C(,j)isused to storedatareceived from P(i,j — 1) or P(i + 1,j),that is, from its
left or bottom neighbors.

The algorithm is given as procedure MESH TRANSPOSE. Note that the contents of
registers A(, i), initially equal to a;, 1 <i < n, are not affected by the procedure.
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Figure 71 Matrix to be transposed, stored in mesh of processors.

procedure MESH TRANSPOSE (A)

Step 1. dosteps 1.1and 12 in parallel
(1.1)fori=2tondoin paralel
forj=1toi— 1doin paralel
Cli— 1 j)(ay.j. 1)
end for
end for
(1.2) fori=1ton— 1 doin parallel
forj=i* 1tondoin parallel
B(’!J - 1)‘_(aij’ja I)
end for
end for.

Step 22 do steps 2.1, 2.2, and 2.3 in parallel
(2.1)fori=2tondoin paralel
forj=1toi— 1doin paralel

while P(i, j) receives input from its neighbors do

(i) if (@, m, k) is received from P(i + 1, j)
then send it to P(i — 1, j)
end if

Chap. 7
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(i) if @, m, K)isreceved from P(i — 1,j)
thenifi=mandj =k
then A(i,j)«a, {a, hasreached its destination}
dsesend (@, m, K toP(3i+1,))
end if
end if
end while
end for
end for
(22) fori=1ton doin paralle
while P(j, i) receives input from its neighbors do
(i) if @, m, k) isreceived from P(i T 1, i)
then send it to PG, i + 1)
end if
(i) if @, m, K) isreceived from P(i, i T 1)
then send it to P(i + 1, i)
end if
end while
end for
(23) fori=1ton—1doin parale
forj=i+ 1tondoin parallel
while P(i, j ) receivesinput from its neighbors do
(i) if (@, m, K) isreceived from P(i, j + 1)
then send it to P(i, j — 1)
end if
(ii) if @, m,K) isreceived from PG, j — 1)
thenifi=mandj=k
then A(i,j)< a, {a, has reached its destination}
dsesend (8, m, k)to PG, j+ 1)
end if
end if
end while
end for
end for. [J

Analysis. Each element a;;, i > j, must travel up its column until it reaches
P(j, j) and then travel along a row until it settles in P(j, i). Similarly for a;;, j > i. The
longest path is the one traversed by a,, (or a,,), which consists of 2(n — 1) steps. The

running time of procedure MESH TRANSPOSE is therefore
t(n) = O(n),

which is the best possible for the mesh. Since p(n) = n?, the procedure has a cost of

0(n®), which is not optimal.

Example 71

The behavior of procedure MESH TRANSPOSE isillustrated in Fig. 7.2 for the input

matrix




A=x A=1 A= 2 1 2
B= B= = 1 2
C= C= C= -4
A=-4 A= A=3 4 Y 3
B= B=y B= 3
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A=-5 A=-6 A=z -6 F3
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C= C= C=
(& INITIALLY (b)_STEPl
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(c) FIRST ITERATION OF STEP 2 (d) SECOND ITERATION OF STEP 2
X -4 5
1 Y 6
2 3 z

(e) THIRD ITERATION OF STEP 2
Figure7.2 Transposing matrix using procedure MESH TRANSPOSE.
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X 1 2
A=]-4 y 3
-5 -6 z

The contents of registers A, B, and C in each processor are shown. Note that for clarity
only thea,; component of (a;;, j, i) is shown for registersB and C. Also when either Bor C
receives no new input, it is shown empty. []

7.2.2 Shuffle Transpose

We saw in the previous section that procedure MESH TRANSPOSE computes the
transpose of an n x n matrix in O(n) time. We also noted that this running timeis the
fastest that can be obtained on a mesh with one dataelement per processor. However,
since the transpose can be computed sequentialy in O(n?)time, the speedup achieved
by procedure MESH TRANSPOSE is only linear. This speedup may be considered
rather small since the procedure uses a quadratic number of processors. This section
shows how the same number of processors arranged in a different geometry can
transpose a matrix in logarithmic time.

Let n =29 and assume that an n x n matrix A isto be transposed. We use for
that purpose a perfect shuffle interconnection with n? processors Py, Py, ..., Py ;.
Element q,; o Aisinitialy stored in processor P,, where k = 2%(i — 1) + (j- 1), as
shown in Fig. 7.3for g = 2.

We claim that after exactly q shuffle operations processor P, contains element
a;. To see this, recal that if P is connected to P,, then m is obtained from k by
cyclicaly shifting to theleft by one position the binary representation of k. Thus Pyg00
is connected to itsalf, Pyoor 1O Pogios Posio 10 Po1oos ---» Proot 10 Poor1s Pigio 10

r 1 r 1 Py Pso Pie Pia Pia Prs Pys I |

12| [B13| [214] [B21] [B22| [P23] |P24]| |31| [Ba2]| [Pas| [Ba4| [Fa1] [Fa2| [Pa3] |F4a

Figure7 3 Matrix to be trangposed, stored in perfect shuffle-connected computer.
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Poio1----»and Py, toitself. Now consider a processor index k consisting of 2g bits.
If k = 29 — 1) + (j— 1), then the g most significant bits of k represent i — 1 while the
g least significant bitsrepresent j — 1. Thisisillustrated in Fig. 7.4(a) for q = 5,i = 5,
and j = 12. After g shuffles(i.e., q cyclic shiftsto theleft), the element originally held by
P, will be in the processor whose index is

s=20-1D+G—-1),

as shown in Fig. 7.4(b). In other words a;; has been moved to the position originally
occupied by a;;. The algorithm is given as procedure SHUFFLE TRANSPOSE. In it
we use the notation 2k mod (227 — 1) to represent the remainder of the division of 2k
by 229 — 1,

procedure SHUFFL E TRANSPOSE (A)

fori=1toqdo
for k = 1t022? — 2doin paralld
P, sends the element of A it currently holds to Py, ac22e-1)
end for
end for. [

Analysis. There are g constant time iterations and therefore the procedure
runs in t(n) = O(log n) time. Since p(n) = n?, c¢(n) = O(n*logn), which is not optimal.
Interestingly, the shuffle interconnection is faster than the mesh in computing the
transpose of a matrix. Thisis contrary to our original intuition, which suggested that
the mesh is the most naturally suited geometry for matrix operations.

0 0] 1 0 0 0 1 0 1 1

{ I J
g MOST SIGNIFICANT BITS g LEAST SIGNIFICANT BITS
REPRESENTING (i- 1) REPRESENTING (j - 1)

(a)

0 1 0 1 1 0 0 1 0 0

! | L |

q MOST SIGNIFICANT BITS g LEAST SIGNIFICANT BITS
REPRESENTING (j - 1) REPRESENTING (i- 1)

®
Figure 7.4 Derivation of numba d shuffles required to trangoose matrix.
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Po [ 2] a,] Po
P, m a,| Py
P, m a,| Py
P, m a,| P
P4 a2 2z P4
PS 322 a,| Ps
Ps 43 a,] P
Pr o] a,| Pz
Pg 2| Pg
Py a5 Po
Pio ay]  Pio
Pr [aed ag| Pt
Pz [2] a,]  Paz
Pia 3| Pi3
P [as a] Pra
Pis  [aw @ a, Pis

Figure7.5 Trangposng matrix usng procedureSHUFFLE TRANSPOSE.

Example 7.2

Thebehavior of procedureSHUFFLE TRANSPOSE isillustrated in Fig. 7.5 for thecase
wheregq = 2. For clarity, theshuffle inter connectionsareshown asa mappingfrom the set
of processorsto itsef. [

7.2. 3EREW Transpose

Although faster than procedure MESH TRANSPOSE, procedure SHUFFLE
TRANSPOSE is not cost optimal. We conclude this section by describing a cost-
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P21
112 |3
4|5 |6
7|89
P32

31 Figure7.6 Transposing matrix using pro-
cedure EREW TRANSPOSE.

optimal algorithm for transposing an n x n matrix A. The algorithm uses (n?> — n)/2
processors and runs on an EREW SM SIMD computer. Matrix A resides in the
shared memory. For ease of exposition, we assume that each processor has two indices
iandj,where2<i<nand l<j<i- 1 With all processors operating in parallel,
processor P;; swaps two elements of A, namely, a;; and a;. The algorithm isgiven as
procedure EREW TRANSPOSE.

prooedure EREW TRANSPOSE (A)

for i=2ton doin parald
forj=1toi— 1ldoin paralld
a;j > 4
end for
end for. [J

Analysis. It takes constant time for each processor to swap two elements.
Thus the running time of procedure EREW TRANSPOSE is #(n) = O(1). Since
p(n) = O(n?),c(n) = Om?), which is optimal.

Example 7.3

The behavior of procedure EREW TRANSPOSE isillustratedin Fig. 7.6 for n = 3. The
figure shows the two elements swapped by each processor. [

7.3 MATRIX-BY-MATRIX MULTIPLICATION

In thissection we assume that the elements of all matrices are numerals, say, integers.
The product of anm x n matrix A by an n x k matrix Bisan m x k matrix C whose
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elements are given by

n
¢y = zlaisxbsj, 1<is<m, 1<j<k
&

A straightforward sequential implementation of the preceding definition is given by
procedure MATRIX MULTIPLICATION.

procedure MATRIX MULTIPLICATION (A, B, C)

fori=1tomdo
for j =1tokdo
(1) ¢;<0
(2) for s=1tondo
Cij < Cij + (@ X byy)
end for
end for
end for. O

Assuming that m<n and k<n, it is clear that procedure MATRIX
MULTIPLICATION runsin O(n®time. Asindicated in section 7.6, however, there
exist several sequential matrix multiplication algorithms whose running timeis O(n*),
where 2 < x < 3 It isnot known at the time of thiswriting whether the fastest of these
algorithms is optimal. Indeed, the only known lower bound on the number of steps
required for matrix multiplication is the trivial one of R(n?). This lower bound is
obtained by observing that n? outputs are to be produced, and therefore any
algorithm must require at least that many steps. In view of thisgap between n? and n*,
2 < x < 3 wewill find ourselves unableto exhibit cost-optimal parallel algorithms for
matrix multiplication. Rather, we present algorithms whose cost is matched against
the running time of procedure MATRIX MULTIPLICATION.

7.3.1 Mesh Multiplication

As with the problem of transposition, again we fed compelled to use a mesh-
connected parallel computer to perform matrix multiplication. Our algorithm uses
m x k processorsarranged in a mesh configuration to multiply an m x n matrix A by
an n x k matrix B. Mesh rows are numbered 1, ..., m and mesh columns 1, ..., k.
Matrices A and B are fed into the boundary processors in column 1 and row 1,
respectively,asshownin Fig. 7.7 form = 4,» = 5,and k = 3. Note that row i of matrix
A lags one time unit behind row i — 1for 2 < i < m. Similarly, column j of matrix B
lags one time unit behind column j — 1for 2 < j < k. Thisensuresthat a;; meets by; in
processor P(i,j) at the right time. At the end of the algorithm, element ¢;; of the
product matrix C resides in processor P(i, j).Initially c;; is zero. Subsegquently, when
P(i, j) receivestwo inputs a and b, it

(i) multiplies them,
(if) adds the result to c;;,
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bis
P Po3
by D22 b33
b,y b3s D43
bay b4n Pgy
by b5
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84 84y 843 Fyy By —
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Figure 7.7 Two matrices to be multiplied, being fed asinput to mesh of processors.

(i) sendsato P(i, j + 1) unlessj =k, and
(iv) sendsbto P(i + 1, j)unlessi = m.

The algorithm is given as procedure MESH MATRIX MULTIPLICATION.

procedure MESH MATRIX MULTIPLICATION (A,B,C)

for i=1tomdo in parald
for j =1tok doin parald
(1) ¢;; <0
(2) while P(i, j) receives two inputs a and b do
(i) ¢;j+«c;t(axb)
(i) if i <m then send b to P(i + 1, j)
end if
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(iii) if j < k thensend a to P(i, j + 1)
end if
end while
end for
endfor.

Analysis. Elementsa,, and b,, takem¥ k + n — 2 stepsfrom the beginning
of the computation to reach P(m, k). Since P(m, K) is the last processor to terminate,
this many steps are required to compute the product. Assuming that m< nand k < n,
procedure MESH MATRIX MULTIPLICATION therefore runsin time #(n) = O(n).
Since p(n) = O(n?), c¢(n) = O(n®), which matches the running time of the sequential
procedure MATRIX MULTIPLICATION. It should be noted that the running time
of procedure MESH MATRIX MULTIPLICATION is the fastest achievable for
matrix multiplication on a mesh of processors assuming that only boundary
processors are capable of handling input and output operations. Indeed, under this
assumption Q(n) steps are needed for the input to be read (by the processors in row 1
and column 1, say) and/or for the output to be produced (by the processorsin row m
and column k, say).

Example 7.4
The behavior d procedure MESH MATRIX MULTIPLICATION isillustrated in Fig.

7.8 for
1 2 -5 —
o2 (22
3 4 -7 -8
The value o ¢;; after each step is shown insde P(, j). O

7.3.2 Cube Multiplication

The running time of procedure MESH MATRIX MULTIPLICATION not only is
the best achievable on the mesh, but also provides the highest speedup over the
sequential procedure MATRIX MULTIPLICATION using n? processors. Neverthe-
less, we seek to obtain afaster algorithm, and aswe did in section 7.2.2, we shall turn
to another architecture for that purpose. Our chosen model is the cube-connected
SIMD computer introduced in chapter 1 and that we now describe more formally.
Let N = 2¢ processors Py, Py,..., P,._, beavailablefor some g = 1. Further, let
i and i® be two integers, 0 < i,i® < 29 — 1, whose binary representations differ only
in position b, 0 < b < g. In other words, if i;_; ... &4y i ip—1 ... i1 i is the binary
representation of i, theni,_y ...iy+q ipiy_y ... i, ig iSthe binary representation of i,
where iy is the binary complement of bit i,. The cube connection specifies that every
processor P; is connected to processor Py by a two-way link for al 0 < b < g. Theg
processors to which P; is connected are called P;’s neighbors. An example of such a
connectionisillustrated in Fig. 7.9 for the caseg = 4. Now let n = 2% We use a cube-
connected SIMD computer with N = n3 = 237 processors to multiply two nx n
matrices A and B. (We assume for simplicity of presentation that the two matrices




5 -8 6
-7 -5 8
2
1210 0 1 1-14 0
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3 4 0 0 3410 0
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1
-19 -16 -19 -22
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© (d)
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Figure 7.8 Multiplying two matrices using procedure MESH MATRIX
MULTIPLICATION.

Figure 7.9 Cube-connected computer
with sixteen processors.
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have the same number of rows and columns.) It is helpful to visualizethe processors as
being arranged in an n x n X n array pattern. In this array, processor P, occupies
position (i, j, k), wherer =in2+jn+ k and 0 <, j, k < n — 1 (thisis referred to as
row-major order). Thus if the binary representation of r iSry,_; r34—2 ... o, then the
binary representations of i, j, and k are r3,—; ... rag, Faq—y ... I, @A ro_y ... 1o,
respectively. Each processor P, has three registers A, B,, and C,, also denoted
A, j,K), B(,j, k), and C(, j, k), respectively. Initialy, processor P, in position (0, j, k),
0<j<n0<k<n,contains ay and by inits registers A, and Bj, respectively. The
registersof al other processors areinitialized to zero. At theend of the computation,
C should contain c, where

n—1
Cjk = Z aﬁ X bik'
i=0

Thealgorithm isdesigned to perform the n® multiplicationsinvolvedin computing the
n? entries of C simultaneously. It proceeds in three stages.

Stage |I: The elements of matrices A and B are distributed over the n®

processors. As a result, A(,j, k)= a; and B(i,j, k)= by.

Stage 2 The products C(, j, k) = A(, j, k) x B(G, j, k) are computed.

Stage 3: The sums 2} C(, j, k) are computed.
The algorithm isgiven as procedure CUBE MATRIX MULTIPLICATION. Init we
denote by {N,r, =d} the set of integersr, 0 <r < N — 1, whose binary represen-
tation isryy_y...tps1 drpy_y...T0

procedure CUBE MATRIX MULTIPLICATION (A,B,C)

Stepl: for m= 3q— 1 downto 2q do
for al rin {N,r, =0} do in paralle

(1.1) Apem = A,
(1.2) Bym = B,
end for
end for.

Step 2. for m=q — 1 downto O do
for al rin {N,r, =rs.,} doin parald
Ar(mJ(——A,
end for
end for.
Step 3: for m= 2q — 1 downto ¢ do
for @l rin {N, r,=r,,,} doin parald
B, « B,
end for
end for.

Step4 for r=1to N doin paralld
C,«< A, x B,
end for.
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Step 5. for m=2gqto3q—1do
for r = 1to N doin paralld
C,—C *+Cim
end for
end for. [

Stage 1 of the algorithm isimplemented by steps 1-3. During step 1, the data initialy
in A(0,j, k) and B(0,]j, k) are copied into the processors in positions (i,j,k), where
1< i< n sothatat theend of thisstep A(i, j, k) = ay and B(i, j, k) = b, for 0 <t < n.
Step 2 copies the contents of A(i, j,i) into the processorsin position (i, j, k), so that at
theend of this step A(i,j, k) = a;;, 0 < k< n. Similarly, step 3 copies the contents of
B(i,i, k) into the processors in position (i,j, k), so that at the end of this step
B(i,j,K) = by, 0 < j < n Instep 4 the product C(,j,k) = A(,]j, K) X B(,j, k) is com-
puted by the processorsin position (i,j,K)for al 0 < i,j, kK < n simultaneously. Finally,
in step 5, the n? sums

n—1
CO,j, k)= 3, CG,j, k)
i=0

are computed simultaneously.

Analysis. Steps], 2, 3,and 5 consist of ¢ constant time iterations, while step
4 takes constant time. Thus procedure CUBE MATRIX MULTIPLICATION runs
in O(q) time, that is, t(n) = O(log n). We now show that this running timeis the fastest
achievable by any parallel algorithm for multiplying two n x » matrices on the cube.
First note that each ¢,; isthe sum of n elements. It takes €2(log n) steps to compute this
sum on any interconnection network with n (or more) processors. To see this, let s be
the smallest number of steps required by a network to compute the sum of n numbers.
During thefinal step, at most one processor is needed to perform thelast addition and
produce the result. During step s — 1 at most two processors are needed, during step
s — 2 at most four processors, and so on. Thus after s steps, the maximum number of
useful additions that can be performed is

s—1
Y o=2_-1
i=0

Given that exactly n— 1 additions are needed to compute the sum of n numbers, we
have n — 1< 2' — 1, that is, s = log n.

Since p(n) = n®, procedure CUBE MATRIX MULTIPLICATION hasa cost of
c(n) = O(n®logn), which is higher than the running time of sequential procedure
MATRIX MULTIPLICATION. Thus, although matrix multiplication on the cube is
faster than on the mesh, itscost is higher due to the large number of processors it uses.
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Example7.5
Let n = 2% and assume that the two 4 x 4 matrices to be multiplied are

17 23 27 3 -7 =25 —19 -5

9 1 14 16 —18 —-30 —-28 -—12
A= and B=

31 26 22 8 —13 =21 —11 =32

15 4 10 29 -20 -2 -6 -24

Thereare N = 2% processors available on a cube-connected SIMD computer Py, Py, ...,
Pg. The processors are arranged in a three-dimensional array as shown in Fig. 7.10(a).
(Notethat this three-dimensional array isin fact asix-dimensional cube with connections
omitted for simplicity.) Each of i, j, k contributes two bits to the binary representation
Fsraryryryry Of theindex r of processor P,: i = rsr,, j = ryr,, and k = r,r,,. Initialy the
matrices A and B are loaded into registers Py, ..., P,5, asshown in Fig. 7.10(b).
Sinceq = 2, step lisiterated twice: oncefor m = 5 and oncefor m = 4. In the first
iteration, all processors whose binary index rsr,r;r,r ry issuch that r = 0 copy their
contents into the processors with binary index rr,ryryrirg (i, rs =1). Thus P, ...,
P, s copy their initial contents into Pj,, ..., P,, respectively,and simultaneously P,
..., P3; copy theirinitial contents (all zeros)into P,g, .. ., Pg;, respectively.In the second
iteration, all processors whose binary index rsr,ryr, r, ro issuch that r, = 0 copy their
contents into the processors with binary index rsryryryr,rg (i€, ¥y, = 1). Thus P, ...,
P, s copy their contentsinto P, ..., P4, respectively, and simultaneously Ps,, ..., P,

copy their new contents (acquired in the previous iteration) into P,g, ..., Py,
respectively. At theend of step 1, the contents of the sixty-four processors are asshown in
Fig. 7.10(c).

Therearetwoiterations of step 2 onefor m = 1and onefor m = 0. During thefirst
iteration all processors with binary index rgr,ryr,r ro such that r, =r, copy the
contents of their A registersinto those of processors with binary index rsr,ryr, 7 re.
Thus, for example, P, and P, copy thecontents of their A registersinto the A registersof
P, and P,, respectively. During the second iteration all processors with binary index
rsraryt,rorgsuch that ro = r, copy the contents of their A registersinto the A registers
of processors with binary index rsr, ryr, ¢, ry. Again, for example, P, and P, copy the
contents of their A registersinto the A registersof P, and P,, respectively. At theend of
this step one element of matrix A has been replicated across each "row" in Fig. 7.10(a).
Step 3 is equivalent except that it replicates one element of matrix B across each
"column." The contents of thesixty-four processors at theend of steps 2 and 3 are shown
in Fig. 7.10(d). In step 4, with all processors operating simultaneously, each processor
computes the product of its A and B registersand stores theresult in its C register. Step 5
consists of two iterations: one for m =4 and one for m = 5. In the first iteration the
contents o the C registers o processor pairs whose binary indices differ in bit r, are
added. Both processors keep the result. The same is done in the second iteration for
processors differingin bit r,. The fina answer, stored in Py, ..., P is shown in Fig.

7.10(e). O
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-944 | -1688| -1282| -1297

-583 | -581 | -449 | -889

-1131{ -2033] -1607] -1363

-887 | -763 | -681 | -1139

(e
Figure 710 Multiplying two matrices using procedure CUBE MATRIX MULTIPLICATION.

7.3.3 CRCW Multiplication

We conclude this section by presenting a parallel agorithm for matrix multi-
plication that is faster and has lower cost than procedure CUBE MATRIX
MULTIPLICATION. The agorithm is designed to run on a CRCW SM SIMD
computer. We assume that write conflicts are resolved as follows; When several
processors attempt to writein the same memory location, the sum of the numbers to
be written is stored in that location. The algorithm is a direct parallelization of
sequential procedure MATRIX MULTIPLICATION. It usesm x n x k processors
tomultiplyanm x nmatrix A by ann x k matrix B. Conceptually the processorsmay
be thought o asbeingarrangedinam x n x k array pattern, each processor having
three indices (i, |, s),where 1 <ig<m, 1 <j < n,and 1 < s < k. Initially matrices A
and B arein shared memory; when the algorithm terminates, their product matrix Cis .
also in shared memory. The agorithm is given as procedure CRCW MATRIX
MULTIPLICATION.

procedure CRCW MATRIX MULTIPLICATION (A, B, C)

fori=1tomdoin paralld
for j = 1tok do in paralle
for s=1tondoin paralld
@ c;+0
(2) Cij‘_ais X bsj
end for
end for
endfor. O

Analysis. Itisclear that procedure CRCW MATRIX MULTIPLICATION
runs in constant time. Since p(n) = n2,

c(n) = p(n) x t(n)
=n? x 0(1)
= 0(n%),
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which matches the running time of sequentia procedure MATRIX MULTI-
PLICATION.

Example 7.6

A CRCW SM SIM D computer with sixty-four processors can multiply the two matrices
A and B of example 7.5 in constant time. All sixty-four products shown in Fig. 7.10(d) are
computed simultaneously and stored (i.e., added) in groups o four in the appropriate
position in C. Thus, for example, P,, P,, P35, and P, compute 17 x (—7), 23 x (—18),
27 x (—13), and 3 x (—20), respectively, and store the results in c,;, yielding
¢ =-94. O

7.4 MATRIX-BY-VECTOR MULTIPLICATION

The problem addressed in this section is that of multiplying anm x n matrix A by an
n X 1 vector U to produce an m x 1 vector ¥, as shown form=3and n=4:

uy

ayy Qg3 Q13 A4 Y1
U

dy; Qyp Q33 dya | X =1V2
Us

a3y Q3y Q33 Qszq V3
Uy

The elements of V are obtained from
vi= Y, a; X u, I<is<m
=1

This of course is a specia case of matrix-by-matrix multiplication. We study it
separately in order to demonstrate the use of two interconnection networks in
performing matrix operations, namely, the linear (or one-dimensional) array and the
tree. In addition, we show how a parallel algorithm for matrix-by-vector multiplica
tion can be used to solve the problem of convolution.

7.4.1 Linear Array Multiplication

Our first algorithm for matrix-by-vector multiplication is designed to run on a linear
array with m processors P,, P,, ..., P,. Processor P;is used to compute element v; of
V. Initialy, v; iszero. Matrix A and vector U arefed to the array, asshown in Fig. 7.11,
for n = 4and m = 3. Each processor P; hasthreeregistersa,u, and v. When P, recelves
two inputs a;; and u;, it

(i) storesa;;inaandu;inu,
(i) multiplies a by u

(iii) adds the result to v;, and

(iv) sendsu;to P,_, unlessi =1.
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841 845 843 84y
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v
3 3 43y 83 833 dgy

u

2 Figure 711 Matrix and vector to be
Us multiplied, being fed as input to linear
u, array.

Note that row i of matrix A lags one time unit behind row i + 1for 1<i<m—1

This ensures that a;; meets u; at the right time. The algorithm is given as procedure
LINEAR MV MULTIPLICATION.

procedure LINEAR MV MULTIPLICATION (A, U, V)

for i=1tomdoin parallel
(1) v; <0
(2) while P, receivestwo inputs a and u do
(2.1) v;«v; T (axu)
(2.2)ifi> 1thensendu to P,_,

end if
end while
end for. [

Analysis. Elementa,, takesm +n— 1stepsto reach P,. Since P, isthelast
processor to terminate, this many steps are required to compute the product.
Assuming m < n, procedure LINEAR MV MULTIPLICATION therefore runs in
timet(n) = O(n). Sincem processors are used, the procedure has a cost of O(n?2),which
is optimal in view of the O(n?) steps required to read the input sequentially.

Example 7.7
The behavior of procedure LINEAR MV MULTIPLICATION for

o[ e e[

isillustrated in Fig. 7.12. [




Matrix Operations ~ Chap. 7

0 fe— 12 Q [ 12
5

O F— 34 15 ¢ 4

5 6

6

(a) (b)

5 F— > 17
6
39 39 : . .
Figure7.12 Multiplying matrix by vector
using procedure LINEAR MV MULTI-
(©) (d) PLICATION.

7.4.2 Tree Multiplication

As observed in the previous section, matrix-by-vector multiplication requires
m+ n — 1stepsonalinear array. Itis possibleto reduce thistimetom — 1 + logn by
performing the multiplication on atree-connected SIM D computer. The arrangement
isasshown in Fig. 7.13for m = 3and n = 4. The tree has n leaf processors Py, P,, ...,
P,,n — 2 intermediate processors P,+, P,+2,..., P,,_,, and aroot processor P,, _,.
Leaf processor P; storesu; throughout the execution of the algorithm. The matrix A is
fed to the tree row by row, one element per leaf. When leaf processor P; receivesay,, it
computes u; X a; and sends the product to its parent. When intermediate or root
processor P, receivestwo inputsfromitschildren, it adds them and sends the result to
its parent. Eventually v; emergesfrom the root. If the rows of A areinput at the leaves
in consecutive time units, then the elements of V are aso produced as output from the
root in consecutive time units. The algorithm is given as procedure TREE MV
MULTIPLICATION.

procedure TREE MV MULTIPLICATION (A, U, V)

do geps 1 and 2 in parallel
(1) for i =1tondoin parald
forj=1tomdo
(1.1) compute ; x ay;
(1.2) send result to parent
end for
end for
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Figure713 Tree-connected computer for
matrix-by-vector multiplication.

() fori=n+1to2n—1doin parallel
while P; recaives two inputs do
(2.1) compute the sum o the two inputs
(2.2) if i < 2n — 1then send the result to parent
else produce the result as output

end if
end while
end for. O

Analysis. It takeslogn steps after the first row of A has been entered at the
leavesfor v, to emerge from the root. Exactly m — 1 steps later, v,, emerges from the
root. Procedure TREE MV MULTIPLICATION thus requires m — 1 + logn steps
for a cost of Q(n¥) when m <n The procedure is therefore faster than procedure
LINEAR MV MULTIPLICATION while using almost twiceas many processors. It
is cost optimal in view of the R'n?) time required to read the input sequentialy.

Example 7.8

Thebehavior d procedureTREE MV MULTIPLICATION isillustratedin Fig. 7.14 for
the same dataasin example7.7. O

7.4.3 Convolution

We conclude this section by demonstrating one application of matrix-by-vector
multiplication algorithms. Given a sequence of constants {w,, w,, ..., w,} and an
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Figure7.14 Multiplying matrix by vector
using procedure TREE MV MULTI-
PLICATION.

input sequence {x,, X, ..., X,}, it isrequired to compute the output sequence{ y, ¥z,

.+, Van_1} defined by

n
Vi = Z Xi—j+1 X W,

=1

I<ig<2n—-1.

This computation, known as convolution, isimportant in digital signal processing. It
can be formulated as a matrix-by-vector multiplication. This is shown for the case

n=3:

X3

o

Xy
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0
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7.5 PROBLEMS

Procedure MESH TRANSPOSE requiresthat the destination (j, i) of each element a;; be
sent along with it during the computation of the transpose of a matrix A. Design an
agorithm for transposing a matrix on @mesh whereiit is not necessary for each element to
carry its new destination aong.

Is the running time of procedure SHUFFL E TRANSPOSE the smallest achievablewhen
transposing a matrix on a shuffle-connected SIMD computer?

Can the transpose d an n x nmatrix be obtained on an interconnection network, other
than the perfect shuffle, in O(log n) time?

Is there an interconnection network capable of simulating procedure EREW
TRANSPOSE in constant time?

Assumethat every processor o an n x n mesh-connected computer contains one element
of each o two n x nmatrices A and B. Usea" distance’ argument to show that, regardless
of input and output considerations, thiscomputer requires€(n) timeto obtain the product
o A and B.

Modify procedure MESH MULTIPLICATION so it can be used in a pipelinefashion to
multiply severa pairs of matrices. By looking at Fig. 7.7, we see that as soon as processor
P(1,1) has multiplied a,, and b, ,, it isfree to receiveinputs from a new pair o matrices.
Onestep later, P(1,2) and P(2, 1) areready, and so on. The only problem iswith the results
aof the previous computation: Provision must be made for ¢;;, once computed, to vacate
P(i, ] ) before the latter becomesinvolved in computing the product of a new matrix pair.
Consider an n x nmesh of processorswith the following additional links: (i) the rightmost
processor in each row isdirectly connected to the leftmost, (ii) the bottommaost processor
in each column is directly connected to the topmost. These additional links are called
wraparound connections. Initially, processor P(i,j) stores elements g; and b; of two
matrices A and B, respectively. Design an algorithm for multiplying A and B on this
architecture so that at the end of the computation, P(i, j ) contains (in addition to a;; and
b;;) element ¢;; of the product matrix C.

Repeat problem 7.7 for the mesh under the same initial conditions but without the
wraparound connections.

Design an algorithm for multiplying two » x » matrices on a mesh with fewer than n?
processors.

Design an agorithm for multiplying two n x n matrices on an n x n mesh d trees
architecture (asdescribed in problem 4.2).

Extend the mesh o trees architecture to three dimensions. Show how the resulting
architecture can be used to multiply two n x n matrices in O(logn) time using n®
processors. Show also that mpairs of n x n matrices can be multiplied in O(m+ 2logn)
steps.

Assume that every processor of a cube-connected computer with n? processors contains
one element of each of two n x nmatrices A and B. Use a "distance" argument to show
that, regardless of the number of steps needed to evaluate sums, this computer requires
Q(log n) time to obtain the product of A and B.

Design an algorithm for multiplying two n x n matrices on a cube with n? processors in
O(n) time.
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Combine procedure CUBE MATRIX MULTIPLICATION and the algorithm in
problem 7.13 to obtain an algorithm for multiplying two n x n matrices on a cube with
n?m processors in O((n/m) + logm) time, wherel < m< n.

Design an algorithm for multiplying two matrices on a perfect shuffle-connected SIM D
computer.

Repeat problem 7.15 for a tree-connected SIMD computer.

It is shown in section 7.3.2 that n processors require Q(logn) steps to add » numbers.
Generalize this bound for the case of k processors, where k < n

Modify procedure CRCW MATRIX MULTIPLICATION to run on an EREW SM
SIMD computer. Can the modified procedure be made to have a cost of O(n®)?

Design an M1 M D algorithm for multiplying two matrices.

Given mn x n matrices A,, A,, ..., A,, design algorithms for two different intercon-
nection networks to compute the product matrix

C=A4, xA x--xA,.

Let w be a primitive nth root of unity, that is, w" = 1 andw' # 1for 1 < i < n The Discrete
Fourier Transform (DFT) of the sequence {a,, a,, ..., a,-} is the sequence {b,, b, ...,
b,—.} where
n-1
bj= Y a X wd for0<gj<n
i=0

Show how the DFT computation can be expressed as a matrix-by-vector product.

The inverse of an nxn matrix A is an nxn matrix A~' such that
AXA'=A4"1x A=1,wherel isan n x n identity matrix whose entries are 1 on the
main diagonal and 0 elsewhere. Design a parallel algorithm for computing theinverse of a
given matrix.

A g-dimensional cube-connected SIM D computer with n = 27 processors Py, P,..., P, _,
is given. Each processor P; holds a datum x;. Show that each of the following
computations can be done in O(logn) time;

(a) Broadcast x4 to Py, Py,...,P,_y.

(b) Replace x, With xo * x; * -+ + x, ;.

(c) Replace x4 with the smallest (or largest) of xg, X1, ...y Xu—1.

An Omega network isa multistage interconnection network with » inputsand » outputs. It
consists of k =logn rows numbered 1, 2, ..., k with n processors per row. The processors
in row i are connected to thoseinrow it1,i=1,2 ..., k-1, by a perfect shuffle
interconnection. Discuss the relationship between the Omega network and a &-
dimensional cube.

7.6 BIBLIOGRAPHICAL REMARKS

A mesh algorithm isdescribed in [Ullman] for computing the transpose of a matrix that, unlike
procedure MESH TRANSPOSE, does not depend directly on the number of processorson the
mesh. Procedure SHUFFL E TRANSPOSE is based on an idea proposed in [Stone 1].

For references to sequential matrix multiplication algorithms with O(n¥) running time,

2 < x < 3,see[Gonnet], [Strassen], and [Wilf]. A lower bound on the number of parallel steps
required to multiply two matricesisderived in [Gentleman]. Letf (k) be the maximum number
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of processors to which a datum originally in a given processor can be transmitted in k or fewer
routing steps. A mesh-connected computer, for example, has (k) = 2k? + % + 1. Itisshown in
[Gentleman] that multiplying two n x n matrices requires at least s routing steps, where
f(2s) = r?. It followsthat matrix multiplication on a mesh requires Q(n) steps. Several mesh
algorithms besides procedure MESH MATRIX MULTIPLICATION are proposed in the
literature whose running time matches this bound. Such algorithms appear in [Flynn],
[Preparate], [Ullman], and [Van Scoy 1]. Algorithms for the mesh with wraparound
connections and two- and three-dimensional mesh of treesare described in [Cannon], [Nath],
and [Leighton], respectively. The idea of procedure CUBE MATRIX MULTIPLICATION
originated in [Dekel], where a number of other matrix multiplication algorithms for the cube
and perfect shuffle interconnection networks are described. The Q(logn) lower bound on
computing the sum of n numbers isadapted from [Munro]. Matrix multiplication algorithms
for the cube and other interconnection networks and their applications are proposed in
[Cheng], [Fox], [Horowitz], [Hwang 1], [Hwang 2], [Kung 2], [Mead], [Ramakrishnan],
and [Varman]. Algorithms for shared-memory computers similar to procedure CRCW
MATRIX MULTIPLICATION can be found in [Chandra], [Horowitz], [Savage 1], and
[Stone 2]. A discussion of variousimplementation issues regarding parallel matrix multiplica-
tion algorithms is provided in [Clint].

Matrix-by-vector multiplication algorithms for a number of computational models
appear in[Kung 1],[Mead], and[Nath]. Paralel algorithms and lower boundsfor a variety of
matrix operations arising in both numerical and nonnumerical problems are described in
[Abelson], [Agerwala], [Borodin 1], [Borodin 2],[Chazell€], [Csanky], [Eberly], [Fishburn],
[Fortes], [Guibas], [Hirschberg], [Kronsjo], [Kucera], [Kulkarni], [Kung 2], [Leiserson],
[Lint], [Mead], [Navarro], [Pease 1], [Quinn], [Savage 2], and [Van Scoy 2].

Thecomputational abilitiesd the Omega network [Lawrie] and its relationship to other
interconnection networkssuch as the generalized-cube[Siegel 2], indirect binary n-cube[Pease
2], Staran flip [Batcher], and SW-banyan [Goke] are investigated in [Siegel 1].
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Numerical Problems

8.1 INTRODUCTION

In any scientific or engineering application of computers, it is usually required to solve
a mathematical problem. Such applications span a wide range, from modeling the
atmosphere in weather prediction to modeling hot plasmasin theoretical physicsand
from the design of space stations, airplanes, automatic pilots and air-traffic control
systems to the design of power stations, automobiles, and ground transportation
networks. In these applications computers are used to find zeros of functions, solve
systems of equations, calculate eigenvalues, and perform a variety of numerical tasks
including differentiation, integration, interpolation, approximation, and Monte Carlo
simulations. These problems have a number of distinguishing properties:

1 Because they typicaly involve physical quantities, their data are represented
using real values, or in computer terminology, floating-point numbers.
Sometimes the numbers to be manipulated are complex, that is, they are of the
form at ib, where a and b are real and

i= -1

2 Their solutions are obtained through agorithms derived from a branch o
mathematics known as numerical analysis and are therefore based on mathemat-
ical theory.

3. Their algorithms usually consist of a number of iterations. Each iteration is
based on the result of the previous one and is supposed, theoreticaly, to
improve on it.

4. Generally, the results produced by numerical algorithms are approximations of
exact answers that may or may not be possible to obtain.

5 There is an almost inevitable element of error involved in numerical com-
putation: round-of errors (which arise when infinite precision real numbers are
stored in a memory location of fixed size) and truncation errors (which arise
when an infinite computation is approximated by a finite one).
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In this chapter we describe paralle agorithms for the following numerical
problems: solving a system of linear equations (section 8.2), finding roots of nonlinear
equations (section 8.3), solving partial differential equations (section 8.4), and
computing eigenvalues (section 8.5). We assume throughout this chapter that all
problems involve real (as opposed to complex) numbers.

8.2 SOLVING SYSTEMS OF LINEAR EQUATIONS

Givenann x nmatrix A and an n X 1 vector b, it isrequired to solve Ax = b for the
unknown n x 1 vector x. When n = 4, for example, we have to solve the following

system of linear equations for x,, x,, x3, and x,:
ayxy tagpx; Fasxs +agx, =by,
azxy F a2%; T ay3%3 + a30x4 = by,
ayx; ta3;x; + as3xy + asex, = by,

agix; T agax, T agsxs T agx,=b,.

8.2.1 An SIMD Algorithm

A well-known sequential algorithm for this problem is the Gauss—Jordan method. It
consistsin eliminating al unknowns but x; from the ith equation. Thesolution isthen
obtained directly. A direct paralelization of the Gauss—Jordan method is now
presented. It is designed to run on a CREW SM SIMD computer with n> +n
processors that can be thought of as being arranged in an n x (n+ 1) array. The
algorithmisgiven as procedure SIMD GAUSSJORDAN. Init wedenoteb; by a; ,, + ;.

procedure SIMD GAUSS JORDAN (A, b, X)

Step1l: forj=1tondo
fori=1tondoin parald
for k =j ton* 1doin paralld
if (i #])
then ay « ay — (a;;/a;;)a,
end if
end for
end for
end for.

Step 2 for i =1ton doin paralle
X; < it/

end for. [

Note that the procedure allows concurrent-read operations since more than one
processor will need to read ay;, a;;, and ay simultaneously.
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Analysis. Step 1 consists of n constant time iterations, while step 2 takes
constant time. Thus t(n) = O(n). Since p(n) = O(n?),c(n) = O(n®). Although this cost
matches the number of steps required by a sequential implementation of the Gauss-
Jordan algorithm, it is not optimal. To see this, note that the system Ax = b can be
solved by first computing the inverse A~ of A and then obtaining x from

x=A"1b.
The inverse of A can be computed as follows. We begin by writing

A= Ay, Ay, _ { 04, O 1 A1_11A12
| Ay, Ay | | AnAr 1)L 0 BJO I
where the A4;; are (n/2) x (n/2) submatrices of A, and B = A4,;, — 4,,A;{'4,,. The
(n/2) x (n/2) matrices | and 0 are the identity matrix (whose main diagonal elements

are 1 and all the rest are zeros) and zero matrix (al of whose elements are zero),
respectively. The inverse of A is then given by the matrix product

P I —At4,, A O I 0
—lo 1 0 B Y| —A, At I

where 47! and B~* are computed by applying the same process recursively. This
requires two inversions, six multiplications, and two additions of (n/2) X (n/2)
matrices. Denoting the time required by these operations by the functions in/2),
m(n/2), and a(n/2), respectively, we get

i(n) = 2i(n/2) + 6m(n/2) + 2a(n/2).

Since a(n/2) = n%/4 and m(n/2) = O((n/2)), where 2 < x < 25 (as pointed out in
example 111), we get i(n) = O(n*).Thus, in sequential computation the time required
to compute the inverse of an n x n matrix matches, up to a constant multiplicative
factor, the time required to multiply two n x n matrices. Furthermore, multiplying
A~ ! by b can be done in O(n?) steps. The overall running time of this sequential
solution of Ax = b is therefore O(n*),2 < x < 25.

Example 8.1
Let usapply procedure SIMD GAUSS JORDAN to the system
2x, + x5 =3,
X, + 2x, =4,
In the firg iteration of step 1, j = 1 and the following values are computed in parallel:

Ay =ay; —(az,/a,)a, =1-(3)2=0,

a5, = ay, = (ay/a,)a, =2 —(3)1 =3,
5
3
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In the second iteration of step 1, j = 2 and thefollowing valuesare computed in parallel:
ay; = ay; — (@15/a25)a,, = 1 — (133) =0,
ays = ay3 — (@45/a55)8,3 =3 — (133 =%

In step 2, the answer isobtained asx, =%2and x, =3 [
8.2.2 An MIMD Algorithm

A differentsequential algorithm for solving the set of equations Ax = b isthe Gauss-—
Seidel method. We begin by writing

A=E+D+F
where E, D, and Faren x n matrices whose elements e;;, d;;, and f;;, respectively,are
given by

e = aij for [ >j’ aij for i= jy aij fOI’ i <j,
4710 otherwise, 4= otherwise, fij = {0 otherwise.

Thus(E+ D+ F)x =band Dx = b — Ex — Fx. For n = 3, say, we have

a,; O 0 X, 0 0 0| x 0 a,, a;; |lx
0 a;;, O jlx;=b—-Ja,;, 0 Ofx2|—10 0 ay; |[x2]
0 0 ai;i[x;s ay; as; 0 |[x; 0 0 0 || x;

Starting with a vector x° (an arbitrary initial estimate of x), the solution vector is
obtained through an iterative process where the kth iteration is given by

Dx* = b — Ex* — Fx*™ 1.

In other words, during the kth iteration the current estimates of the unknowns are
substituted in the right-hand sides of the equations to produce new estimates. Again
for n=4and k = 1, we get

ayyx} = by — 0 — (a;,%3 + ay3%3 + a,4x9),
azyx3 = by — (a3,x}) — (323%3 + a54%2),
a33x} = by — (a3, %] + a3,%3) — (a34%3),
44Xy = by — (@41 x] + a4 + a43x3) — 0.

The method is said to converge if, for some Kk,

Z": abs(x¥*! —xH <,
i=1
where abs denotes the absolute value function and ¢ is a prespecified error tolerance.
The algorithm does not appear to be easily adapatable for an SIMD computer.
Given N processors, we may assign each processor the job of computing the new
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iterates for n/N components of the vector x. At the end of each iteration, dll
processors must be synchronized before starting the next iteration. The cost o this
synchronization may be high because of the following:

i) The x¥ cannot be computed until x* is available, for al j < i; this forces the
p i J
processor computing x; to wait for those computing x;, j < i, and then forcesall
processors to wait for the one computing x.

(i) Some components may be possible to update faster than others depending on
the values involved in its computation (some of which may be zero, say).

Typically, this would lead to an algorithm that is not significantly faster than its

sequential counterpart.
There are two ways to remedy this situation:

1. The most recently available values are used to compute x¥ (i.e., there is no need
to wait for xt, j < i).
2 No synchronization is imposed on the behavior of the processors.

Both of these changes are incorporated in an algorithm designed to run on a CREW
SM MIMD computer with N processors, where N < n. The algorithm creates n
processes, each of whichisin charge of computing one of the components of x. These
processes are executed by the N processors in an asynchronous fashion, as described
in chapter 1. The agorithm is given in what follows as procedure MIMD
MODIFIED GS. Init x?, old,, and new, denote the initial value, the previous value,
and the current value of component x;, respectively. As mentioned earlier, c is the
desired accuracy. Also note that the procedure allows concurrent-read operations
since more than one process may need new, simultaneously.

procedure MIMD MODIFIED GS (A, x, b, c)

Step1: for i=1tondo
(1.1) old, < x?
(1.2) new; « x?
(1.3) creste processi
end for.

Step 2 Processi
(2.2) repeat
(i) old; « new;
i—1

(ii) new, « (b,. ~Y (g x old) — 3 (ay x oldk) / a,
k 1

=1 k=i+
until Y abs(new; — old,)< c

i=1

(22) x; < new,. O

Note that step 2 states one of the n identical processes created in step 1.
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Discussion. In an actual implementation of the preceding procedure, care
must be taken to prevent a process from reading a variable while another processis
updating it, as this would most likely result in the first process reading an incorrect
value. There are many ways to deal with this problem. One approach uses special
variables called semaphores. For each shared variable v; there is a corresponding
semaphore s; whose value is set as

_jo if v; isfree,
%=1 if v, iscurrently being updated.

When a process needs to read v, it first tests s;: If s; = 0, then the process reads v;;
otherwise it waitsfor it to be available. When a process needsto update v;, it first sets
s; to 1 and then proceeds to update v;.

As pointed out in chapter 1, MIM D algorithmsin general are extremely difficult
to analyze theoretically due to their asynchronous nature. In the case of procedure
MIMD MODIFIED GStheanalysisisfurther complicated by the use of semaphores
and, moreimportantly, by the uncertainty regarding the number of iterationsrequired
for convergence. An accurate evaluation of the procedure's behavior is best obtained
empirically.

Example 82
Consider the system of example 8.1 and assume that two processors are available on a

CREW SM MIMD computer. Takex? = 4, x3 = 3,and ¢ = 0.02. Process 1 setsold, = %
and computes

new, =33 -3 =2
Simultaneously, process 2 sets old, =2 and computes

new, =44 -4 =2

The computation then proceeds as follows

—
o

(1) new, =3, new, =42,
(2 new, =4, new, = 27,
(3) new, =%, new, = 33,
(4 new, =4£3, new, = 127,
(5) new, =5 new, = 213,

Since abs(&2 — &%) + abs(1Q? — 213) < 0.02, the procedure terminates. [J
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8.3 FINDING ROOTS OF NONLINEAR EQUATIONS

I n many scienceand engineering applications it is often required tofind the root of an
equation of one variable, such as

xS —x3+7=0,
sin x — e =0,
x2 —cosx =0.

Finding the root of an equation of thisform analyticaly is usually impossible, and one
must resort to numerical algorithms to obtain an approximate solution.

8.3.1 An SIMD Algorithm

A standard sequential algorithm for root finding is the bisection method. Let f(x) bea
continuous function and let a, and b, be two values df the variable x such that f(a)
and f(bo) have opposite signs, that is,

f(ao)f(bo) < 0.

A zero off [ie., a value z for which f(z) = 0] is guaranteed to exist in the interval
(a,, bo). Now theinterval (a,, by) is bisected, that is, its middle point

mo = Hao + bo)

is computed. If f(ao)f (mg) <0, then z must lie in the interval (a,,b,)=(a,, my);
otherwiseit liesin the interval (a,,b,) = (m,, by). We now repeat the process on the
interval (a,, b,). This continues until an acceptable approximation of z is obtained,
that is, until for some n = 0,

(i) abs(b, —a,) <cor
(i) abs(f(m,))<c',

where ¢ and ¢ are small positive numbers chosen such that the desired accuracy is
achieved.

The agorithm using criterion (i) is given in what follows as procedure
BISECTION. Initially, a= a, and b = b,. When the procedure terminates, a zero is
known to exist in (a, b).

procedure BISECTION(f; a, b, c)

while abs(b — @) = c do
(1) m«¥a T hb)
(@ iff (a)f(m)<o0thenb«m
elsea<m
end if
end while. O
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f(x)

Figure81 Finding root using procedure BISECTION.

Since the interval to be searched is halved at each iteration, the procedure runs
in O(log w) time, where w = abs(b, — a). When f isdiscrete rather than continuous,
procedure BISECTION is equivalent to procedure BINARY SEARCH d chapter 3.
The procedure's behavior is illustrated in Fig. 8.1 for some function f. After four
iterations, a zero is known to lie in the interval (m, m).

In much the same way aswe did with procedure BINARY SEARCH in section
5.2.2, we can implement procedure BISECTION on a parald computer. Given N
processors, the idea is to conduct an (N + 1)-section search on a CREW SM SIMD
computer. The initial interval, known to contain one zero of a functionf; is divided
into N + 1 subintervals of equal length. Each processor eval uates the function at one
of the divison points, and based on these evaluations, one o the subintervals is
chosen for further subdivision. As with the sequential case, this processis continued
until the interval containing a root is narrowed to the desired width. The algorithm is
given in what followsas procedure SIMD ROOT SEARCH. It takes the function f,
theinitial interval (a, b),and the accuracy ¢ asinput and returns an interval in whicha
zero of f liesand whose width is less than c. The procedure is designed to run on a
CREW SM SIMD computer since at the end of each iteration all processorsneed to
know the endpoints (g, b) o the new interval. Without loss o generality, we assume
that a< b at all times.
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Figure8.2 Finding root using procedure SIMD ROOT SEARCH.
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procedure SIMD ROOT SEARCH (f; a, b, ¢

while (b — a) = cdo
(1) s (b —a/N+1)
(2) yoTfla)
(3) yv+1<fb)
(4) for k=1to N doin parallée
(4.1) yr<T(a+ ks)
(4.2) if ye_1y, <Othen (i) a«at (k- 1)s

(i) b—atks
end if
end for
(5) if yyyx+1 <Othena«—a+ Ns
end if
end while. 3

Analysis. Stepst, 2, 3, and 5 may be executed by one processor, say, Py, in
constant time. In step 4, which also takes constant time, at most one processor P, will
discover that y, -, y, < 0 and henceupdate aand b. If no processor updatesaand bin
step 4, then the zero must bein the (N + 1)st interval, and only ais updated in step 5.
The number of iterations is obtained as follows. Let w be the width of the initial
interval, that is, w= b — a. After j iterations the interval width is w/(N + 1)/ The
procedure terminates as soon as w/(N + 1)/ < ¢. The number of iterations, and hence
the running time, of procedure SIMD ROOT SEARCH is therefore O(logy . ;). Its
cost isO(Nlog, w), which, as we know from chapter 5, is not optimal.

Example 8.3
The behavior of procedure SIMD ROOT SEARCH on the function in Fig. 8.1 when
three processors are used is illustrated in Fig. 82. After one iteration the interval
containing the zero is (x, x,), as shown in Fig. 8.2(a). After the second iteration the
interval is(x,, x,) & shown in Fig. 8.2(b). [

8.3.2 An MIMD Algorithm

Another sequential root-finding algorithm that is very commonly used is Newton's
method. A continuously differentiable function f(x) is given together with an initial
approximation x, for one of its roots z. The method computes

xn+1:xn_f(xn)/f’(xn) fOI’I’]=O, 152’---7

until abs(x,,; — %) < c. Here f'(X) is the derivative off (x) and c is the desired
accuracy. A geometric interpretation of Newton's method isshown in Fig. 8.3. Note
that the next approximation x, , iSthe intersection with the x axis of the tangent to
the curve f(x) at X,.

The main reason for this method's popularity isitsrapid convergence when x; is
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Figure 8.3 Newton's method for finding root.

sufficiently close to z. More precisaly, if

(i) f(x) and its first and second derivatives f'(x) and f”(x), respectively, are
continuous and bounded on an interval containing a root z, withf '(x) # 0, and

(i) abs(xq —2) <1,

then for large n, abs(x, ., — z) = k(x, — z)?, where k is a constant of proportionality
that dependsonf () andf "(2).In other words, theerror in x,, .. , is proportional to the
square of the error in x,.

The method issaid to have quadratic convergence under the conditions stated in
the preceding. I n practice, this means that the number of correct digits in the answer
doubles with each iteration. Therefore, if the answer is to be accurate to mdigits, the
method converges in O(log m) time.

One difficulty with Newton's method isfindingan initial approximation that is
sufficiently closeto thedesired root. Thisdifficulty isalmost eliminated by implement-
ing the method on a CRCW SM MIMD computer as follows. We begin with an
interval (a,b), wherea < b, known to contain one zero z of f(x). Theinterval isdivided
into N + 1 subintervals of equal size, for some N > 2, and the division points are
taken asinitial approximations of z. The computation consists of N processes. Each
process applies Newton's method beginning with one of the division points. The
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processes are executed concurrently, though asynchronously, depending on the
availability of processors. As soon as a processconverges, it indicatesthat by writing
the valueit found in a shared-memory location ROQOT. Initially, ROOT isset to the
value co. As soon asthat vaueischanged by a process, all processesare terminated.
If two (or more) processesconvergeat the same time and attempt to writein ROOT
simultaneously, then only the smallest-numbered processis allowed access while the
othersare deniedit. In case a processdoes not convergeafter a predefined number o
iterations, it issuspended. The algorithm isgiven in what followsas procedure MIM D
ROOT SEARCH. It takesas input the function f, itsderivativef’, theinterval (a, b),
the accuracy ¢, and the maximum allowable number of iterations r. It returns its
answer in ROOT.

procedure MIMD ROOT SEARCH (f; f, a b, ¢, r, ROOT)
Stepl st (b—ay(N T1).
Step 2 for k =1toN do

create processk
end for.

Step3 ROOT « w.

Step 4 Process k
(4.2) x,9 —a tks
(4.2) iteration < 0
(4.3) while (iteration < r) and (ROOT = <o) do
(i) iteration « iteration + 1
(ii) Xpew < Xota — S (Xa1)/ S (Xora)
(iii) if abs(Xpew — Xo1a) < C then ROOT « X
end if
(lV) Xold €~ Xnew

end while. [

Note that variablesa, s r, ¢, and ROOT used in processk are global. On the other
hand, variablesiteration, x4, and x,.. areloca; they are not subscripted in order to
smplify the notation.

Analysis. Let N processors be available. If N is large, one o the starting
pointswill becloseenough to z If in addition f(x),f '(x), andf " (x) are continuous and
bounded on the interval (a, b), then one of the N processes will convergein O(log m)
time, where m is the desired number of accurate digitsin the answer.

Example 84
Let f(x) =x> —4x — 5. Thus f'(x) = 3x? — 4. There is a zero of f(x) in the interval
(—3,3). Let N =5; theinterval is divided into sx subintervals with division points at
X = —=2, —1,0, 1,and 2 and the corresponding five processesare created. Let c = 107 1°,
and assume that five processors are available to execute the five processes simulta-
neoudly. In that case, process 5 is the fastest to converge to aroot at 2.456678. [
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8.4 SOLVING PARTIAL DIFFERENTIAL EQUATIONS

Partial differential equations (PDEs) arise in such diverse applications as weather
forecasting, modeling supersonic flow, and elasticity studies. A particularly important
class of PDEsisthat of linear equationsof second order in two independent variables
x and y. One representative of thisclassis Poisson's equation
J%u(x, 2u(x,
Uy + Uy, = G(x’ y) where Uy = %’ Uy, = a(y y)a

u(x, y)is the unknown function, and G is a given function of x and y. The solution of
this equation is often needed in so-called boundary-value problems, a typical example
of which is the Model Problem stated as follows.

Let R and Sdenote the interior and boundary, respectively, of a region in two-
dimensional space, and let f (x,y) be a continuous function defined on S The desired
function u(x, y) must satisfy Poisson's equation on R and equal f(x,y) on S In
sequential computation, the Model Problem is solved numerically by first deriving a
discrete version of it. Here R and Sare theinterior and boundary, respectively, of the
unit square, 0 < x < 1, 0 < y< 1. A uniform mesh of n+ 1 horizontal and n+ 1
vertical lines, where n is an arbitrary positive integer, is superimposed over the unit
square, with a spacing of d = 1/n between lines. The (n+ 1)* intersections of these
linesare called mesh points. For a mesh point (x, y)in R, u,, and u,, are approximated
by difference quotients as follows:

Uy = [U(x + d, y) + u(x — d, y) — 2u(x, y)I/d*,
u,, = [ulx, y + d) + u(x, y — d) — 2u(x, y)]/d>.
This leads to the following form of Poisson's equation:
u(x, y) = [ulx +d, y) + u(x — d, y) + u(x, y + d) + u(x, y — d) — d*G(x, y)]/4,

known as a difference equation. An iterative process called successive overrelaxation is
used to obtain an approximate value for u(x, y) at each of the (n — 1)? interior mesh
points. Beginning with an arbitrary value uq(x, y), the following iteration is used:

uk(x, .V) = uk—l(x5 ,V) + w[u,’((x, y) - uk—-l(x" y)] fOI' k = 1, 2; ces
where
u(x, y) = [ty (x +d, y) + (x — d, y) + wy_1(x, y + d)

+ ulx, y — d) — d*G(x, y)]/4
and

w = 2/[1 * sin(zd)].

Let e, denote the absolute value of the difference between u,(x, y) and the exact
value of u at (x,y). The iterative process continues until

e, < eo/10°
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where o is a positive integer representing the desired accuracy. Neither e, nor ¢, is
known, of course. However, it can be shown that the process converges and the
preceding inequality is true after k = gn iterations, where g = v/3. Since there are
(n — 1)? interior points, the entire process takes O(n®)time.

This approach to solving PDEs lends itself naturally to implementation on an
N x N mesh-connected SIMD computer with N =n — 1, as shown in Fig. 8.4 for
N = 4. Each processor P(i,j),1 < i, j < N, is in charge of computing an approxi-
mation of the function « at point (id,jd). It does so beginning with the initial value
uy(id, jd)and then iteratively using the values computed by itsfour neighborsasinput.
Boundary processors, of course, have fewer than four neighbors and use the values o
fix,y)at x=0, 1 and y =0, 1 to replace the input from missing neighbors. One
difficulty to overcome s the fact that u,(x, y) depends on w(x — d, y)and u(x,y — d).
I n sequential computation, thisis no problem since the kth iterates are computed one
at atimefrom x =0to x =1 and from y=0 to y = 1. By the time u(x, y)isto be

y 1
1
I I | I
I I I I
I I I I
I I I I
4d t— — — —P(1,9) P(2,4) P(3,4) P(4,4) f— — — —
3d —— ——P(1,3) P(2,3) P(3,3) P(4,3) — — — —
2d — — — —P(1,2) P(2,2) P(3,2) P(4,2) f— o — —
d f—— — —P1,9) P(2,1) P(3,1) P(4,1) b— — — —
I I [ I
I I I I
I | | |
I | | I
0 d 2d 3d 4d 1 5

Figure84 Mesh of processors for solving partial differential equations.
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computed, u,(x — d, y) and ux,y — d) are available. In the paralel version each
iteration will consist of two stages:

1 During thefirst stage one-half of the processors compute new valuesfor u based
on the values held by the other half.

2 During the second stage, the remaining processors update their valuesd u using
the new values just computed in 1.

The two sets of processors in 1 and 2 are chosen to correspond to the red and black
squares, respectively, on a checkerboard. Let w,, and w, , denote the value of w
during stages 1 and 2, respectively, of iteration k, where

wy, =1,
wy, = 1/(1 = $cos.rrd),
and for k=2 3,...,

11 - ¢ cos® nd)w, ],

1/[1 — % cos®* nd)w, 1]

Wr.1

Wi,2
The equations for updating u are now as follows:
Stage I: For al 1<i,j<N,such that i + j iseven,
w(id, jd) = u,_(id, jd) T wy ; [uy(id, jd) - u,_,(id, jd)],
where
w'(id, jd) = [u_ (id + d,jd) F w_,Gd — d, jd)
o 1Gd, jd + &)t u_,(d, jd — d) — d2G(x, y)]/4.
Stage 2: For all 1<i,j< N such thati *jisodd,
uid, jd) = u,_,(id, jd) T w, [uiid, jd) — w,_1(id, jd)],
where
u(id, jd)= [u(id T d, jd) ¥ wd — d, jd) T w(id, jd + d)
+ u(id, jd - d) - d*G(x, y)]/4.

The algorithm is given as procedure MESH PDE.

procedure MESH PDE (f; G, g)

Step 1. {Compute boundary values)
(1.1) for i=1toN doin paralld
(i) P(1, i) computes f(0, id)
(if) P(N, i) computes f(1, id)
end for
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(1.2)for i=1toN doin parald
(i) PG, 1) computes f(id, O)
(it) P@i, N) computes f(id, 1)
end for.
Sep2  {Inputinitid vaues)
for i=1toN doin parald
for j=1to N doin paralld
P(i, j ) readS uq(id, jd)
end for
end for.

Sep 3. {Iterate until convergence)
for k =1togn do
for i=1to N do in paralld
for j=1to N doin parald
(3.1) if (i Tj)iseven
then P, j) updates u(id, jd)
end if
(3.2)if (i +j)isodd
then P, j) updatesu(id, jd)
end if
end for
end for
end for. J

Analysis. Steps1 and 2 take constant time. Step 3 consists of O(n) constant
timeiterations. Thus #(n) = O(n). Since p(n) = O(n?),c(n) = O(n®),which matches the
running time of the sequential algorithm.

Example 8.5

Fgure 85 illugtrates the behavior d procedure MESH PDE for the processorsin Hg.
84. Notethat d =02 [

8.5 COMPUTING EKGENVALUES

The algebraic eigenvalue problem derives its importance from its relation to the
problem of solving a system of n simultaneous linear differential equations of first
order with constant coefficients. Such a system is written as

dx/dt = Ax

where Aisann X nmatrix and x isan n X 1vector. For somevectoru # 0, x = ue" is
a solution of the preceding system if and only if Au = Au. Here, 4 is cdled an
eigenvalue and u an eigenoector. The algebraic eigenvalue problem is to determine
suchdand u. There areawaysneigenva ues. To each eigenval ue, there corresponds at
least one eigenvector.



f(0,2d)

f(d,1) f(2d,1) f(3d,1)  f(4d,1)
f(d,0) f(2d,0) £(3d,0) f(4d,0)
(@) STEP1
uo(d,4d) u0(26,4d) uo(Bd.Ad) uo[adﬁd)
uo(d.ad) uo(zd,sd) u0(3d‘3d) uo(dd,ild)
uo(d,Zd) u0(2d,2d) u0(3d.2d) uo(ad,Zd)
uo(d.d) u0(2d,d) uo(i}d,d) uo(ad‘d)

(b) STEP 2

£(1,d)
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u(2d,4d) u(4d,ad)

u(d,3d) u(3d.3d)

u(2d 2d) uf4d,2d)

u{d.d) u(3d.d)

(c) STEP (3.1)

u(d,ad) u(3d,4d)

u(2d,3d) u(4d,3d)

u(d.2d) u(3d,2d)

u{2d.d) u(dd,d)

(d) STEP (3.2)
Figure85 Solving Model Problem using procedure MESH PDE.

For an n X n matrix B and an n x 1 vector vy, if we apply the transformation
x = By to the system o differential equations, we get

dy/dt = (B~ *AB)y.

Theeigenvaluesdof B~ ' AB arethe sameasthosedf A.We thereforechoose B such that
the eigenvalues of B™'AB are easily obtainable. For example, if B~*AB is a diagonal
matrix (i.e., all elements are zero except on the diagonal), then the diagonal elements
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are the eigenvalues. One method of transforming a symmetric matrix A to diagonal
form is Jacobi's agorithm. The method is an iterative one, where the kth iteration is
defined by

A, =RA,_RT fork=12...,
with
Ay = A

The n x nmatrices R, are known as plane rotations. Let af; denote the elements
of A,. The purpose of R, isto reduce the two elementsaf, * and a%, ' to zero (for some
p < gdepending on k). I n redlity, each iteration decreasmthesum of the squares of the
nondiagonal elements so that A, converges to a diagonal matrix. The process stops
when the sum of the squares is sufficiently small, or more specificaly, when

dk=<i Z 11)2> /2<C

=
i#}

for some small tolerance c. At that point, the columns of the matrix

RIRY ... R} are the eigenvectors.

The plane rotations are chosen as foIIows If as; ! is a nonzero off-diagonal

element of A4, _,, wewish to define R, so that a, = 0. Denote theelements of R,
by r¥. We take

rk, =rk =cosé,

rh,= —rk,=sné,

rk=1 foris#poraq,
rk =0 otherwise,
where cos 8, and sin 6, are obtained as follows. Let
0= (@t a2
and
B = 1/[sign(@)1[abs(@) + (1 + «)"?],

where sign(e) is 1 or —1 depending on whether a, is positive or negative,
respectively. Then

cos 8, =1/1F g)Y2 and sin g, = B, cosb,.

Theonly question remaining is: Which nonzero element a%, ! is selected for reduction
to zero during the kth iteration? Many approaches are p0$| ble, one of which is to
choose the element of greatest magnitude since this would lead to the greatest
reduction in d,.

Asdescribed in the preceding, the algorithm convergesin O(n?)iterations. Since
each iteration consists of two matrix multiplications, the entire process takes O(nS)
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time, assuming that the (sequential) procedure MATRIX MULTIPLICATION is
used.

Jacobi's method lendsitself naturally to parallel implementation. Let n= 2, for
some positive integer s In what follows we give a parallel algorithm designed to run
on a cube-connected SIMD computer with n® = 23% processors, as we did in section
7.3.2. We visualize the processors of this 3s-dimensional cube as being arranged in an
nx nXxn array pattern, with processor P, occupying position (i, j, m), 0 < i, j,
m < n— 1 The processorsare arranged in row-major order, that is,» = in? +jn+ m
The matrix A (ie, A) isinitially stored in the n? processors occupying positions
0,j,m), 0 <j, m< n— 1, oneelement per processor. In other words, A, isstored in
the processors of a 2s-dimensional cube. At the beginning of iterationk, k =1,2,...,
these same processors contain A,_,. They find its largest off-diagona element and
create R, and Rf. All n® processors are then used to obtain C, = R,4,_, and
A, = C,RI. At the end of theiteration, if d, < c, the process terminates.

The algorithm is given in what follows as procedure CUBE EIGENVALUES.
The subscript k is omitted from A,, R, Rf, and d, since new values replace old ones.

procedure CUBE EIGENVALUES (A, )

whiled > ¢ do
(1) Find the off-diagonal element in A with largest absolute value
(2) Create R
(3) A<~ RA
(4) Create RT
(5) A+ART
end while. [

Analysis. As pointed out earlier, the n? processors holding A form a 2s-
dimensional cube. From problem 7.23 we know therefore that they can computed, in
O(log n) time. By the same reasoning, step 1 takes O(logn) time. Steps 2 and 4 take
constant time since each of the n? processors in positions (0, j, M), 0 <j, m< n— 1,
creates one element of R, and one of RY. Procedure CUBE MATRIX
MULTIPLICATION of chapter 7 whose running time is O(log n) is then applied in
steps 3 and 5 to compute R,AR!. The time per iteration is thus O(logn). Since
convergence is attained after O(n?) iterations, the overall running time is O(n?log n).
Given that p(n) = n3, c(n) = O(n°log n), which is by a factor of logn larger than the
sequentia running time.

Example 8.6
Letn=2(Ge,s=1),

1 1
A:[ ] and c=10"5.
1 1

Procedure CUBE EIGENVALUES in this case requires eight processors forming a
three-dimensional cube. Figure 8.6(a) shows the elements of A, inside the processors to
which they are assigned.
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81

82

83

84

In the first iteration, the off-diagona element a,, = 1is chosen for reduction to
zero (e, p=1and q=2). Thus

cos 0 in 0
1 SIht, | 1/\/2 1/\/
| l 1 I

—sin @, cos0,

as shown in Fig. 8.6(b). Now

R — [ 1//2 1/\/§J[1 1] B [\/5 \/_]
1o _1/\/5 1/\/511 0 0
is computed using all eight processors to execute the eight multiplications involved
simultaneously, as shown in Fig. 8.6(c).

The elements of R, A4, replace those of 4, and R7 replaces R,, as shown in Fig.
8.6(d). Finally ART is computed and the value of A, at the end of the first iteration is
shown in Fig. 8.6(e). Since the two off-diagonal elements are both zero, the procedure
terminates. The eigenvaluesare 2 and 0, and the eigenvectorsare

A2 /DT and (-14/2 1,/27 O

8.6 PROBLEMS

In procedure SIMD GAUSS JORDAN the elements q;; are called the pivots. If at any
point a pivot equals zero, then the procedure obviously failssince a;; is a denominator. In
fact, if the values of one or more pivotsare near zero, then theerrors of computation grow
exponentially as they propagate, and the procedure is said to be numerically unstabk. To
avoid these problems, a method called pivoting is used: A pair of rows and columns are
interchanged so that the new element used as a pivot is not too close to zero. Modify
procedure SIMD GAUSS JORDAN to include pivoting.

Gaussian elimination is a standard method for solving the system of equations Ax = b. It
begins by transforming the given system to the equivalent form Ux = ¢, where U is an
n X n upper triangular matrix (i.e., al elements below the diagonal are zero) and c is an
n x 1 vector. The transformation is performedin n — 1 steps. During stepj, variable x; is
eliminated from equations i=j+1, j+ 2 ..., n by subtracting from each of these
equationsthe product (a;;/a;) x (equation j). Thetriangular system Ux = cisnow solved
by back substitution, computing x, from the nth equation, x,_, from the (n — 1)st, and
finally x, from thefirst. Design a parallel version of Gaussian eliminationfor aSM SIMD
computer and analyze its running time and cost.

Modify the parallel algorithm derived in problem 8.2 to include pivoting as described in
problem 8.1.

Another method for solving Ax = b is known as LU decomposition. The matrix A is
decomposed into two matricesL and U such that LU = A, where U is upper triangular
(u,; = 0if k> jHand L islower triangular (I, = 0if i < k) with diagonal elementsequal to
1@, =1if i =k).Thesolution of Ax = bisnow achieved by solvingLy =band Ux =y
using forward and back substitution, respectively. Consider the special case where A is
positive definite, that is,

(i) a;=a; fordliandj, 1<i,j< n, meaning that A is symmetric;
(i) vTAv > O for dln x 1 nonzero vectors v.
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In this case the elements of L and U are obtained as follows:
Ip = a Jug, i>k,
Uy = i k<j
where

aj; = a; and a,i(j+l = a{"j = (i X uy;).
(a) Show how the matrices L and U can be computed on an interconnection network
SIMD computer in which the processorsform a hexagonal array as shown in Fig. 8.7.
(b) Show how both systems Ly = b and Ux = y can be solved on an interconnection-
network SIMD computer in which the processors form a linear array.
A matrix Q issaid to be orthogonal if QQT = QTQ = I. The system Ax = b can also be
solved using a method known as QR factorization. Here two matrices Q and R are
obtained such that

QA =R

where Q is orthogonal and R upper triangular. Thus the system Rx = Qb can be solved
directly by back substitution. Matrix Q isformed as the product of plane rotations, that is,
matrices P, ; identical to | except in positions pi, Pii+1> Pi+1i> @nd Pivqie1- Let
bu=(ah t ak W)Y ei= ay/by, and s; = a;.q ;/by;. We take py = piv1i41 = ¢, and
Piivy = —DPi+1,; = 5. Each plane rotation therefore annihilates one element of A below
the diagonal. Show how the matrix R can be computed on an n x n mesh-connected
SIMD computer.

Let two processors be available on an MIMD computer, and assume that procedure
MIMD MODIFIED GSis used to solve the system of equations

4x; —x; — X3 — X, =0,
—x; +4x; —x3—x, =0,
—~x; — X3 + 10x; + 4x, = 22,
—x; — X, + 4x5 + 10x, = 16,

with ¢ = 0.1 and starting from theinitial estimates x} = x§ = x3 = x$ = 0. Processors P,
and P, begin by executing processes [ and 2, respectively, and halt after oneiteration with
x; = X, = 0. Processes 3 and 4 are now executed. After a few iterations, the values of x;
and x, eventually converge to approximately % and $, respectively. The procedure
therefore returns an incorrect answer since the solution to the systemis x, =1, x, = 1,
x3 = 2,and x, = 1. Theerror is due to the fact that the values computed for one pair of
unknowns are not revised once new values for the other pair have been obtained. Suggest

changes to the procedure to allow for this revision.

Derive MIMD algorithms for the methods described in problems 8.2, 8.4, and 8.5.
Unlike procedure BISECTION, procedure SIMD ROOT SEARCH assumes that the
initial interval contains exactly one zero of the input function. Modify the procedure so
that it returns exactly one of possibly several roots in the initia interval. Analyze the
running time and cost of the new procedure.

An old method for solving f(x) = 0 is based on linear interpolation between two previous
approximations toa root in order to obtain an improved approximation. Let (x,,X,) bean
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8.10

811

812

Figure 8.7 Hexagonal array connection.

interval containing a root. The method is called regula falsi and uses the iteration

Xnew = X — f(x)x, — x)/[f(x,) — f(x)]
to obtain a new interval. Derive a parallel version of this algorithm.
Procedure MIM D ROOT SEARCH beginswith aninterval (a,b) known to contain aroot
zd f(x)=0. Theinterval isdivided into N + 1 subintervals and the division points are
taken as initial approximations of z. Each of N processes applies Newton's method
beginning with one of these approximations. Discuss the possibility of one of these
processes converging to a zero outside (a, b) beforeany other processconvergesto z. Can
the procedure be modified to include this possibility?
Our analysis of procedure MIMD ROOT SEARCH assumes that N processors are
available to execute the N processes involved. What can be said about the procedure's
cost? Analyze the procedure's running time and cost for the case where fewer than N
processors are available.
One disadvantage o Newton's method is that it reguires that f'(x) be computable. In
some applications f(x) may not be known. The secant method solves f(x) = 0 using
essentially the same approach but without requiring any knowledge of f*(x).Instead the
difference equation

f'(xn) = [f(xn) - f(xn—l)]/(xn — Xp— 1)
is used. Thus
Xn+1 = Xp — (xn - xn—l)f(xn)/[f(xn) —f(xn— 1)]

The method derivesits namefrom thefact that x,,, , isthe intersection with the x axis of
the secant passing through the points (x,, f(x,)) and (x,-,, f(x,_.)). Discuss various
approaches to implementing this algorithm in parallel.
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Show that the solution to thediscrete Model Problem can be obtained by solvinga system
of (n — 1)? linear equationsin (n — 1)?> unknowns using the methods of section 8.2.

Procedure MESH PDE assumes the existence of (n — 1)? processors on the mesh. Show
how the algorithm can be modified for the case where fewer processors are available.
Analyze the running time and cost of the new algorithm.

What changes should procedure MESH PDE undergo to handle the case where R is not
the unit square but an arbitrary plane region?

Jacobi's method is another iterative approach to solving the Model Problem. Given'old"
values u, _,(x, y) at mesh points, the following equation is used to generate "new" values:

wlx, y)=lwe_(x+d, Y +u_(x—d, y)+u_ylx, y+4d

+ U y(x, y — d) — d*G(x, y))/4.
Although slow in its convergence, requiring O(n?) iterations, this method is easier to
implement in parallel than successive overrelaxation. Show how this can be done.

Modify procedure CUBE EIGENVALUES to produce the eigenvectors as wdl as
eigenvalues.

Implement Jacobi's method for computing eigenvalues on a mesh-connected SIMD
computer and analyze its performance.

Can you implement Jacobi's method for computing eigenvalues on a parallel model of
computation with a cost of O(n®)?

Jacobi's method for computing eigenvalues can be modified so that more than just one off-
diagonal element isannihilated in each iteration, thus providing greater parallelism. Show
how this can be done.

f(x)

n-1 n

Figure88 Numerical integration by trapezoidal rule.
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821 Aswesaw in this chapter, many numerical algorithms areinherently parallel. One further
example is provided by numerical integration, that is, the computation of an approxi-
mation to the definite integral

b
D =j f(s)dx.

As shown in Fig. 88, this problem can be interpreted as that of computing the area
between the curveforf (x)and the x axison theinterval (a, b).One very simpleformula for
approximating D isthetrapezoidal rule. Theinterval (a,b)isdividedinto N subintervals of
equal sizeh=(b—a)/N.Withx,=a,x, =a +h,..., xy = b and f; = f(x;), the approx-
imate value of D is given by

(h/2)(f0 +2f; + %+ + 2fN—1 + fa)-

Discuss various parallel implementations of this rule.

8.7 BIBLIOGRAPHICAL REMARKS

Referencesto sequential numerical algorithms, including the ones described in this chapter, are
found in [Conte], [Hamming], [Ralston], [Stewart], [Wilkinson], and [Young]. Paralel
numerical algorithms are either described or reviewed in [Heller 2], [Hockney], [Hwang],
[ICPP], [Kronsj6],[Kuck 2],[Kung], [Miranker], [Pool€], [Quinn], [Rodrigue], [Sameh 2],
[Schendel], and [Traub].

Thereisa vast literature on SIMD algorithmsfor solving systemsof linear equations; we
simply mention [Bojanczyk], [Fortes|, [Heller 2], [Mead], [Sameh 2], [Sameh 5], and
[Traub]. In our analysis of procedure SIMD GAUSS JORDAN, we showed that matrix
inversion can be reduced to matrix multiplication. Our argument ignored a number o rare
specia cases. A thorough treatment is provided in [Bunch] and [Schonhage]. In fact, the
converseisalsotrue: Itisshown in[Munro] that theproduct AB of twon x nmatrices A and B
can be obtained by inverting a 3n x 3n matrix as follows:

I 4 o] I - A AB
0 I B =10 I —B|
0 0 I 0 0 I

We conclude therefore that inverting an n x n matrix is equivalent to multiplying two n x n
matrices. Procedure MIMD MODIFIED GSis based on ideasfrom [Baudet], whereresults of
experiments with the method are reported. It should be noted that many situations are known
in which the Gauss—Seidel method is guaranteed to converge. For example, let A beann x n
symmetric matrix al of whose diagonal elements are positive. The Gauss-Seidel method
converges when applied to thesystem Ax = b if and only if A is positivedefinite. Other MIM D
algorithmsfor solving linear systemsare presented in [Arnold], [Evans], [Lord], and [Wing].

The development of procedure SIMD ROOT SEARCH wasinspired by [Kung], where
an MIMD agorithm is also described. Other approaches are proposed in [Eriksen], [Gal],
[Heller 1], and [Schendd].

Parallel algorithmsfor solving partial differential equations are discussed in [Buzbee 1],
[Buzbee 2], [Fishburn], [Heller 2], [Jones|], [Karp], [Rosenfeld], [Sdtz], [Sameh 3],
[Swarztrauber], [Sweet], and [Traub].
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Methods for accelerating the convergence of procedure CUBE EIGENVALUES, aswdl
as other algorithms for computing eigenvaluesin parallel, are the subject of [Kuck 1], [Sameh
1], and [Sameh 2]. Parallel algorithmsfor special casesof the eigenvalue problem arestudied in
[Heller 2] and [Sameh 4].

Parallel solutions to a variety of other numerical problems can befound in[Borodin 1],
[Borodin 23, [Csanky], [Devreese], [Eberly], [Haynes], [Numrich], [Pan], [Valiant], and
[von zur Gathen].
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Computing Fourier
Transforms

9.1 INTRODUCTION

Thischapter is about one of the most important computations arising in engineering
and scientific applications, namely, the discrete Fourier transform (DFT). Given a
sequence of numbers {aq,a,, ..., d,-1}, its DFT is the sequence {bo, b;,..., b},
where

n—1
bj=Y axwH forj=0,1,...,n— 1L
k=0

In the preceding expression, w isa primitive nth root of unity, that is,w = e2™/", where

i=/—1

9.1.1 The Fast Fourier Transform

Sequentially, a straightforward computation of b; requires n multiplicationsand n — 1
additions of complex numbers. Thisleads to an O(n?) computation time to obtain the
entire sequence {b,, b,, ...,b,_}. Such timeis prohibitive for very large values of n,
particularly in applications where several sequences of this kind must be computed
successively. Fortunately, a better algorithm exists. Let n= 2° for some positive
integer s. Thus the expression for b; can be rewritten as

2711 28711

bj= Y W™ Y gy WOV
m=0 m=0
2513 . -1 '25—1_1 B .
= Z azme21njm/2 + W] Z a2m+1e21n_1m/2
m=0 m=0
forj=0,1,...,n— 1L Thisleadsto arecursive algorithm for computing b; sinceeach

of thetwo sumsin thelast expression isitsdf a DFT. Thisalgorithm, known asthefast
Fourier transform (FFT),isgiven in what follows as procedure SEQUENTIAL FFT.
The procedure takes as input the sequence A = {ay,4a,, ...,a,_,} and returns its
transform B = {bo, b;,...,b,_1}.

231
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procedure SEQUENTIAL FFT (A, B)

if n =1 then b, « a,
dse(1) SEQUENTIAL FFT (a,,a,, ..., d,_ 2, Ug, Uyyenny Ugyay—1)
(2) SEQUENTIAL FFT (a,,8,, ...,8,—y, g, V1ye- vy Viuyay—1)
(3) z<1
(4)for j=0ton —1do
4.1) bj‘—ujmad(n/Z) + Z(Ujmod(n/Z))
(42)z<zxw
end for
edif. O

As can be easily verified, the procedure runs in O(nlog n) time.

9.1.2 An Application of the FFT

The efficiency of the FFT has made it an extremely popular computational technique
in such applications as digital signal processing, coding theory, computerized axial
tomography scanning, speech transmission, weather prediction, statistics, image
processing, multiplication of very large integers, and polynomia multiplication. In
order toillustrate its use, we show how the FFT accelerates the computation of the
product of two polynomias. Consider the polynomial
Ao+ ;X + a;x* + -+ a, ,x"*+a,_x" !

whose coefficients form the sequence {a,, a,,...,a,-;}. Then element &; of the
sequence {b,, by, ..., b, ,} defined in the preceding is the value of this polynomial at
x = wi, wherew®, w!, ..., w"~ ! arethe nth roots of unity. Conversely, the value d the
polynomial

botb,xt .. tp, _,x"2+b,_ x"!

at x = (w™')* is given by
lnfl .
a=-Y bw )* fork=0,1,...,n— 1.
nj=o

The sequence {a,, a,, ..., qa,_,} is the inverse DFT of {bg, b,,...,b,-,} and can
be computed in O(nlog n) time through minor modifications to procedure
SEQUENTIAL FFT.

Assume now that we want to multiply the two polynomials

f(x)= "il a;x’ and  g(x) = "il o x*
j=0 k=0

to obtain the product polynomial h =fg. The straightforward product requires O(n?)
time. By using the FFT, we can reduce this to an O(nlog n) time computation. Thisis
done as follows:
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Step 1 Let N be the smallest integer that is a power of 2 and is greater than
2n — 1. Each of the two sequences {a,, a,,...,a,—1} and {co,€ys-+.,Cn-1} IS
padded with N — n zeros.

Step2 Computethe FFT of {a,,a,,...,8,-1,0,0,...,0}. Thisyiedsthe values
of polynomial f at the Nth roots of unity.

Step 3: Computethe FFT of {cq, ¢ys.ev5€4-1,0,0,...,0}. Thisyieldsthe values
of polynomial gat the Nth roots of unity.

Step 4 Compute the product f(w/) x g(w’) for j =0, 1, ..., N — 1, where
w = e**/¥ The resulting numbers are the values of the product polynomial h at
the Nth roots of unity.

Step 5. Computetheinverse DFT of the sequence { f (w®)g(w°), f(wi)g(w?), ...,
SN Hg(wh 1} The resulting sequence of numbers are the coefficients of the
product polynomial h.

Step 1 takes O(N) time. Each of steps 2, 3, and 5 is known to require O(N log N)
operations while step 4 consists of N multiplications. Since N < 4n, the overal
product takes O(nlog n) time.

9.1.3 Computing the DFT in Parallel

There is a considerable amount of inherent parallelism in computing the DFT of a
sequence {a,, a,,...,a,-,}. Two general approaches can be adopted in order to
exploit this paralelism.

1 Inthefirst approach, the sequence {b¢, b,, ..., b,_,} iscomputed directly from
the definition

n—1
bj= Y a x wh
k=0

using N processors, where typically N = n. This results in algorithms whose
running times are at most linear in n and whose costsare at least quadratic in n.
We illustrate this approach in section 9.2.

2 In the second approach, parallel versions of the FFT are derived. Among the
best of these are algorithms using n processors and runningin O(log n)timefor a
cost of O(nlogn). This cost matches the running time of procedure
SEQUENTIAL FFT. Weillustrate this approach in sections 9.3 and 9.4.

9.2 DIRECT COMPUTATION OF THE DFT

This approach to the paralel computation of the DFT is based on the observation
that the sequence

n—1
- kj
b; = kZO Qg X w
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can be expressed as the following matrix-by-vector product

by o1 1 R 1 a

b, 1w w? w3 w1 a,

b, |=|1 w? w* woé ... w3 a, |,
__bn—l_ _1 Wn—l w2(n—1) W3(n—1) W(n—l)(n—l)J _an—l_

or b= Wa where W isan n x n matrix and b and aare n x 1 vectors.

Conseguently, any of the algorithms developed in chapter 7 for matrix-by-
matrix multiplication or matrix-by-vector multiplication can be used to compute the
preceding product. Regardless of which algorithm is used, however, an efficient way
must be specified for generating the matrix W, or more precisely for obtaining the
various powers of w. Our purpose in this section is twofold:

1. Wefirst describe a simple algorithm for computing the matrix W, which runsin
O(log n) time and uses n? processors.

2. We then show how the processors of 1, with an appropriate interconnection
network, can be used to compute the DFT.

9.2.1 Computing the Matrix W

Assume that an SIMD computer is available that consists of n? processors. The
processors are arranged inan n x narray pattern with nrows numbered 1,..., n,and
n columns numbered 1,..., n. Processor P(k, j),1 < k, j < n, isrequired to compute
wk~DU-D This computation can be accomplished by repeated squaring and
multiplication. For example, w!® is obtained from [(w?)? x w] x [(w?)?*]% The
algorithm is given in what follows as procedure COMPUTE W. Each processor
P(k, j) is assumed to have three registers: M,;, X,;, and Y,;. Register M,; stores the
power to which wis to be raised, while registers X, ; and Y;; store intermediate results.
When the procedure terminates, Y,; = w* =DV~

procedure COMPUTE W (k, j)
Step Ll M,;« (k- 1)j - 1).
Step 2 X,;«w.

Step3 Y,

Step 4 while M,; # 0 do
(4.1) if M,;isodd
then %, « Xi; X ¥;
end if
(4.2) M« |M,;/2]
(4.3) ij4— X,fj
end while. O

j« L
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Analysis. Steps 1, 2, and 3 of the preceding procedure take constant time.
There are O(log[(k — 1)(j — 1)]) iterations o step 4, each requiring constant time.
Procedure COMPUTE W therefore runs in O(logn) time. In fact, the procedure's
actual running time can be slightly reduced by noting that w2 = —1, and therefore
wit @2 — —wi Consequently,only powersof w smaller than n/2 need be computed.

Discussion. The preceding description does not specify whether or not the
n? processorson the SIMD computer share a common memory or are linked by an
interconnection network. Indeed, procedure COM PUT E W requiresno communi cat-
ion among the processorssinceeach processor producesa power of windependently
of al other processors. In the next section we show that when a particular network
connectsthe processors, the DFT o a sequence can be computed in the sameamount
o time required to generate the matrix W.

9.2.2 Computing the DFT

The n? processorsof the SIM D computer in the previous section are now intercon-
nected as follows:

1 The processorsin row k are interconnected to form a binary tree, that is for
j=1,...,1n/2], processor P(k, j)is linked directly to processors P(k, 2j) and
P(k, 2j T 1), with P(k, 2| n/2] T 1) nonexistent if nis even.

2 The processorsin column j are interconnected to form a binary tree, that is for
k=1,...,n/2], processor P(k,j) is linked directly to processors P(2k, j) and
PQk T 1, j),with PQLn/2] T 1,]) nonexistent if nis even.

This configuration, called the mesh d treesin problem 4.2, isillustrated in Fig. 9.1 for
n= 4. We assume that the processorsin row 1 and column 1 are in charge of input
and output operations, respectively. Thus, for example, processor P(1,]) can read a
datum a;. It isthen possible, using the binary tree connections, to propagate a; to al
processorsin column j. The algorithm is given as procedure PROPAGATE.

procedure PROPAGATE (a))

for m=1to (logn) — 1do
for k =2""!to2™ — 1 doin paralld
P(k, j)sends a; to P(2k, j)and P(2k + 1, j)
end for
end for. [

This procedure (which is essentially procedure BROADCAST d chapter 2 im-
plemented on a tree) requires O(log n) time.

Similarly, assume that each processor in row k contains a number 4, ; and that
the sum of these numbersis required. Again, using the binary tree connections, the
sum can be computed and produced as output by P(k, 1). The algorithm is given as
procedure SUM.
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P(1,1) I L) P(1,3) P(1,4)
P(2,1) T P(2,2) ] P(2,3) P(2,4)

P(3,1) P(3.2) P(3,3) P(3.4)

[

P(4,1) P{4,2) P(4,3) P(4,4)

Figure91 Mesh of trees connection.

procedure SUM (k)

for m = (logn) — 1 dewnte 1 do
for j=2""1to 2™ — 1 doin parallel
dyj—dy 25+ dygje
end for
end for. O

This procedure is a formal statement of the algorithm in example 1.5 and runs in
O(log n) time.
We are now ready to show how the product

b= Wa

isobtained. Therearefour stages to thiscomputation. Initialy, the elements of matrix
W are created one element per processor. In the second stage, the elements of the
vector a are read. Each processor in row 1 reads a different element of vector a and
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propagates it down itscolumn. At this point, processor P(k, j)containsw* YU~ 1 and
a;_,: All the products a;_; x w*~1U~1 are computed simultaneously. Finally, the
sums of these products are obtained for each row and the results produced by the
processors in column 1. The algorithm is given as procedure SIMD DFT.

procedure SIMD DFT (A, B)

Sep L1 for k=1ton doin paralle
for j = 1ton doin paralld
COMPUTEW (k,j)
end for
end for.

Step2: for j=1ton doin paralle
(2.1) P(1, j) recalvesa;_, asinput
(2.2) PROPAGATE (g;-,)
end for.

Step3 for k=1ton doin parald
for j = 1ton doin parald
dyj e Y X a4
end for
end for.

Sep4 for k=1ton doin paralle
(4.1) SUM (k)
42) b1+ dy
(4.3) P(k, 1) produces b, -, as output
ad for. [J

Analysis. Steps I, 2, and 4 require O(log n) time, while step 3 takes constant
time. The overal running time of procedure SIMD DFT is therefore

t(n) = O(log n).

This represents a speedup of O(n) with respect to produce SEQUENTIAL FFT (the
fastest sequential algorithm for computing the DFT). In fact, this running timeis the
best possiblefor any network that computesthe DFT. To seethis, note that each b; is
the sum of n quantities, and we know from section 7.3.2 that computing such a sum
requires Q(log n) parallel time.

Since p(n) = n?, the procedure's cost is c(n) = O(?10gn) for an efficiency of
O(1/n) with respect to procedure SEQUENTIAL FFT.

Example 9.1
Thefour stepsdf procedureSIMD DFT areillustrated in Fig. 9.2 for thecasen = 4.
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g a, a, a,
1 1 1 1 8 | & [ 32| @3
1 w w? | wd 8 | a4 a2 | %
1 w2 | w? | wb a; | a, a, | aj
1 w3 wb W9 a, a, a, as
(@) (b)
ag a, a, a, by «—
2 3
ag | aw [aw”|aw by «
2 4 6
ag |aws|aw’lagw by
3 6 9
ag lawlaw®law Dy

© (d)

Figure 9.2 Computing discrete Fourier transform using procedure SIMD DFT.

9.3 A PARALLEL FFT ALGORITHM

With a running time of O(log n) procedure SIMD DFT is quite fast, and as was just
shown, it achieves the best possible speedup over the fastest sequential algorithm for
computing the DFT. The procedure's efficiency, however, is very low due to thelarge
number of processorsit uses.

In this section a parallel algorithm with better efficiency is described. The
algorithm implementsin parallel a nonrecursive version of procedure SEQUENTIAL
FFT. It isdesigned to run on a mesh-connected SIMD computer with n processors
Py, Py,...,P,_, arranged in a 2' x 2° array, where n= 225, The processors are
organized in row-mgjor order, as shown in Fig. 9.3 for n=16.

Let k bealog n-bit binary integer. We denote by r(k) thelog n-bit binary integer
obtained by reversing the bits of k. Thus, for example, if the binary representation of k
is01011, then the binary representation of r(k) is11010. Thealgorithm isgivenin what
follows as procedure MESH FFT. The input sequence {a,, a,,...,qa,_,} isinitialy
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2 .
Po Py P2 P3
P, Ps Pg P,
o172
Pg Py P10 Py
Pyo Py3 Pia Pi5| Figure93 Mesh of processors for com-
puting fast Fourier transform.

held by the processorsin the mesh, one element per processor; specificaly P, holdsa
for k=0, 1 ..., n—1 When the procedure terminates the output sequence,
{b,, b,,. .., b,—1} is held by the processors such that P, holds b, for k=0,
1,...,n- 1L

procedure MESH FFT (A, B)
Step 1. for k=0ton — 1doin paralld

Cp < Oy
end for.

Step 22 for h = (logn) — 1 downte O do
for k =0ton — 1doin paralld
(21) pe2
(22) gn/p
(2.3) zewP
(2.4) if (k mod p) = (k mod 2p)

then (i) ¢y« ¢ T ¢y X z"HImode

(i) Cxep e €k — Crup x WM
end if
end for
end for.
Step 3: for k=0ton— 1doin parald
by Criky

end for. O
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Note that part (ii) in step 2.4 used the old value of ¢, rather than the new vaue
computed in part (i), that is, ¢, and c,,, may be thought of as being updated
simultaneously.

Analysis. The purposeof step 1isto save the values of the input sequence; it
is performed locally by each processor and takes constant time. Step 2 comprises both
routing and computational operations, while step 3 consists of routing operations
only. We analyze the time required by these two kinds of operations separately.

Computational Operations. There are log n iterations in step 2. During each
iteration, processor P, performs a fixed number of computations, the most time
consuming of which isexponentiation, which (asshown in section 9.2.1) takes O{log n)
time. The time required for computational operations is therefore O(log?n).

Routing Operations.  One time unit is required to communicate a datum from
one processor to an immediate neighbor. In step 24, if k mod p =k mod 2p, then
processor P, needsto receivec, , , from P, , (inorder to update ¢, and ¢, .. ;) and then
return ¢, ., to P, ,. The time required by this routing depends on the value of h.
When h = 0, p= 1 and communication is between processors on the same row or
column whose indices differ by 1 (i.e., processors that are directly connected on the
mesh): The routing takes one time unit. When h =1, p = 2 and communication is
between processors on the same row or column whoseindices differ by 2 The routing
takes two time units. Continuing with the same reasoning, when h =logn — 1,
p = n/2 and communication is between processors on the same column whose indices
differ by n/2: The routing takes n'/2/2 time units. In general, for p=2" h =2s _ 1,
2s — 2,...,0, the number of time unitsrequired for routing is 2™, The total number
of time units required for routing in step 2 is therefore

AL+ 244+ -+ 271 =202 —1).

In step 3, ¢,y is to be routed from P,, to P,. The two processors that are the
furthest apart are P,._, (northeast corner) and P,s,- - ;, (Southwest corner). Thesetwo
processes are separated by 2(2° — 1) edges, that is, 2(2° — 1) time units are needed to
communicate a datum from one of them to the other. This means that the routing
operations performed in steps 2 and 3 require O(2°) time units, that is, O(n!/?) time.

For sufficiently large values of n, the time needed for routing dominates that
consumed by computations. Therefore, the overall running time of procedure MESH
FFT is t(n) = O(n'/?). Since p(n) = n, c(n) = O(n*?). It follows that the procedure
provides a speedup of O(n'/?log n) with an efficiency of O(log n/n'’?).

Compared with procedure SIMD DFT, procedure MESH FFT is slower and
thus provides a smaller speedup with respect to procedure SEQUENTIAL FFT. On
the other hand, it usesfewer processors and has a lower cost and a higher efficiency.
Furthermore, the architecture for which it is designed uses constant-length wiresand
is modular and regular.
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Example 9.2

Let n = 4. Thecontentsof the four processorsafter step 1 of procedure MESH FFT are
shown in Fig. 94(a). During the firg iteration of step 2, h=1. All processors
simultaneously compute p = 2, g = 2, and z = w?. The condition

k mod p =k mod 2p
holdsfor k =0, 1 but not for k = 2, 3. Therefore processor P, computes
co=co T (W),
=ag + a,,
and

¢3 =¢co — (W,
=a, —a,,

while P, computes

€1 =0 + w?)°c,

=a, a,,
Co=12g c, = a,
Cy=12, C3=3;
(@
Co=8y+ 8, c,=a, +a,
Ca=28,-3, Cy=a;-2,

Figure9.4 Computing fast Fourier trans-
(b form using procedure MESH FFT.
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and
cs=c¢; — (W)’
=a, —a,

The contents of the four processors at the end of thisiteration are shown in Fig. 9.4(b).

During the second iteration of step2,h =0, p=1,q =4, and z = w. Thistime the
condition kmod p= kmod2p holds for k=0, 2 but not for k =1, 3. Therefore P,
computes

co = Cp + WOc,
:a,+a,+a,+a3,
and

€, =co — wWo¢y
=a, ta —(a +a),

while P, computes
¢, =c, T wic,
=a, —a, Twa -a),
and
c3=c, — wlcs
=a, —a, —wa, —a,).
During step 3, by = ¢y, by =¢34, by = ¢y, and by = ¢;. Consequently,
bo=a, ta ta +a,
by=a, Twa —a, — wa,
=a, twa, T w2, + w3,
b,=a,—a, +a, —a,
= a, + wla; + w*a, + wbas,
by=a, — wa; —a, T wa,
=a, Twia, + wfa, +wa,,
asrequired. [

9.4 PROBLEMS

9.1 Suppose that the DFT of several sequences of the form {a, a,,...,a,-;} is to be
computed directly from the definition, that is, as a matrix-by-vector product (seesection
9.2). Oneapproach would be to pipeline the computation on amesh with O(n?} processors.
Another isto take theinput sequencesn at atime and regard thecomputation asa matrix-
by-matrix product; any of the solutions to this problem given in chapter 7 can then be
used. Propose a precise algorithm for each of these two approaches and analyze the
running time and number of processors used by each.
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9.4 Problems 243

Give the iterative sequential agorithm for computing the FFT upon which procedure
MESH FFT is based, and prove that it is equivalent to the recursive procedure
SEQUENTIAL FFT of section 9.1.

Show how the algorithm derived in problem 9.2 can be implemented on a linear array of
processors.

A special-purpose parallel architecture for implementing the al gorithm derived in problem
9.2 may consist of logn rows of n/2 processors each. The processorsin a row execute the
computations required by oneiteration of the algorithm's main loop (step 2 in procedure
MESH FFT). This is illustrated for n =8 in Fig. 9.5, where the two values in
{co>€y,.+,¢,— 1} Updated by each processor are shown. Compare thisimplementation to
the onein section 9.3in terms of number of processors, running time, period, architecture
regularity, and modularity.

Routing operations take placein steps 2.4 and 3 of procedure MESH FFT. Asstated in
section 9.3, however, the procedure does not specify how this routing is to be performed.
Give a formal description of the routing process.

Modify procedure MESH FFT for the case where N processorsare available to compute
the FFT of the sequence {ag,4ay,...,4a,—;} when N <n.

The following sequential procedure is another iterative way of computing the FFT.

- b,
Co =3y o o & > %
c c c
cy=a, — % —‘ 2 1 b,
C=23 ¢ c, c, b,
_ ¢ c ¢
Cy =25 ~— 5 “ 3 3 bg
Ca=a, c L ¢ ¢, F— B
2 4 4
- c c c
Cg =3y 6 6 5 —> by
C3=8 — ¢ ¢ c by
3 5 6
_ c c c
C, =2, 7 7 7 b,

Figure95 Architecture for problem 9.4.
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procedure I TERATIVE FFT (A, B)
Step 1. fork =0ton —1do

Cp < ay
end for.

Step 2 for h = (logn) — 1 dewnto 0 do
(21) p 2~
(22) g<n/p
(23) z w2
(24) fork=0ton— 1do
if (k mod p) = (k mod 2p)
then (i) ¢, «c, T Chsp

(ii) cp+p—(c — Ot p)zkmdP
end if
end for
end for.
Pia Pis
P
34
P36
P24 P26
P, 0 P1 2
P30 P22
P20 P32
P15 P‘l 7
P P P
35 27
P25 37
P1 1 P1 3
P P
31 Poy Po3 33 Figure 9.6 Cube-connected

Chap. 9
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Step3 fork=0ton— 1do
brgy + i

end for. O

Note that part (ii) of step 2.4 usesthe old value of ¢, [not the value computed in (i)]. Show
how this procedure can be implemented to run on a shuffle-exchange-connected SIM D
computer using O(n) processors and O(log n) constant time iterations (not counting the
time required to compute z*™*# during each iteration).

98 An interconnection-network SIMD model known as the cube-connected cycles (CCC)
network is described as follows. Consider a d-dimensional cube. Each of the 24 corners o
the cubeisa cycle of d processors. Each processor in a cycleisconnected to a processor in
a neighboring cyclein the samedimension. A CCC network with twenty-four processorsis
shownin Fig. 9.6. Note that P;;isconnected to P, whenj and k differ only in their ith most

coLumn © 1 2 3 4 5 6 7

-1
%
Q
—

ROW O | »

Figure9.7 Butterfly network.




246 Computing Fourier Transforms Chap. 9

significant bit. Describe an algorithm for computing the FFT of an n-element input
seguence on an n-processor CCC network.

99 Show that the CCC network is essentialy the network in problem 9.4 with wraparound
connections (asdefined in problem 7.7) between the first and last rows.

9.10 An interconnection-network SIMD modegl known as the butterfly network consists of
d+ 1 rows and 24 columns, as shown in Fig. 9.7 for d = 3. Let P(,j) represent the
processor in row i and columnj. For i > 0, P(i, j)isconnected to P(i — 1,j)and P(i — 1, k)
where the binary representations of k and j differ only in their ith most significant bit.
Relate the butterfly network to the cube and cube-connected cycles networks.

9.11 Show how the FFT of an input sequence of length n = 2¢ can be computed on a butterfly
network.

9.12 Repeat problem 9.11 for a d-dimensional cube interconnection network.

9.13 Repeat problem 9.6 for the parallel algorithms derived in problems 9.7, 9.8, 9.11, and 9.12.

9.14 Relate the process of computing the FFT to that of bitonic merging as discussed in
problem 3.9.

9.15 Two numbers x and n aregiven. It isrequired to raise x to the power n. Assuming that one
is not allowed to use a concurrent-write shared-memory computer (SIMD or MIMD),
how fast can this computation be performed in parallel? Compare the running time of
your parallel algorithm with that of the sequential procedure COMPUTE W in section
921

9.5 BIBLIOGRAPHICAL REMARKS

Various descriptions of the sequential FFT and its applications can be found in [Burrug],
[Cochran], [Cooley 13, [Cooley 2], [Cooley 3],[Horowitz], [Schonhage], and [Wilf]. Parallel
algorithms for the direct computation of the DFT are described in [Ahmed], [Mead], and
[Thompson 2]. The mesh of trees architecture was originally proposed for the problem of
sorting in [Muller] and then rediscovered in [Leighton] and [Nath]. Paralel algorithms for
implementing the FFT on a mesh-connected SIMD computer appear in [Stevens], [Thom-
pson 1], and [Thompson 27.

Other architectures for implementing the FFT in parallel are the linear array ([Thom-
pson 2]), the perfect shuffle ([Heller], [Pease 1], [Stone], and [Thompson 17]), the cube
([Pease 2] and [Quinn]), the butterfly ([Hwang], [Krongo], and [Ullman]), the tree
(JAhmed]), and the cube-connected cycles ([Preparata]). It is shown in [Fishburn] and
[Hwang] how to implement the parallel FFT algorithms for the perfect shuffle and butterfly
networks, respectively, when the number of processors is smaller than the size of the input.

Other parallel algorithmsfor Fourier transforms and related computations can befound
in [Bergland], [Bhuyan], [Briggs], [Brigham], [Chow], [Corinthios], [Cyre], [Dere], [Des-
pain 1],[Despain 2],[Evang], [Flanders], [Hockney],[Jesshope], [Korn], [Kulkarni], [Lint],
[Parker], [Ramamoorthy], [Redinbo], [Swarztrauber], [Temperton], [Wang], [Wold], and
[Zhang]. The problem of parallel exponentiation is discussed in [Kung].
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Graph Theory

10.1 INTRODUCTION

In virtualy all areas o computer science, graphs are used to organizedata, to model
algorithms, and generally as a powerful tool to represent computational concepts.
Trees, in particular, are omnipresent. Many branches d engineering and science rely
on graphs for representing a wide variety of objectsfrom electrical circuits, chemical
compounds, and crystalsto genetical processes, sociological structures, and economic
systems. The sameis true for operations research, where graphs play acrucial rolein
modeling and solving numerous optimization problemssuch as scheduling, routing,
transportation, and network flow problems. It is therefore important for these
applications to develop efficient algorithms to manipulate graphs and answer
questions about them. As a consequence, a large body o literature exists today on
computational graph-theoretic problemsand their solutions.

This chapter is concerned with parallel graph algorithms. We begin in section
10.2 by defining some termsfrom graph theory. Section 10.3-10.6 are devoted to the
problems o computing the connectivity matrix, the connected components, the
shortest paths, and minimum spanning tree of a graph, respectively.

10.2 DEFINITIONS

A graph consists of afinite set of nodes and a finite set of edges connecting pairs o
these nodes. A graph with sx nodes and nine edgesis shown in Fig. 10.1(a). Here the
nodes(also called vertices) arelabeled a, b, ¢, d, € and 1. Theedgesare(a, b), (a ¢), (b, ©),
(b, €),(c,d),(cf), (d,e),(df), and (g f). A graph isdirected when itsedges (also called
arcs) have an orientation and thus provide a one-way connection as indicated by the
arrow headsin Fig. 10.2(a). Herenodeaisconnectedto b, node bisconnectedto cand
d, and nodedisconnectedto c. The notation G = (¥, E) is used to represent agraph G
whose vertex set is V and edgeset isE

A matrix representation can be used for computer storage and manipulation of a
graph. Let G beagraph whosevertex setis V ={v,, vy,...,v,—}. Thisgraph can be

251
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(@) (b)

(a) (b)
Figure 102 Directed graph and its adjacency matrix

uniquely represented by an n x n adjacency matrix A whose entries a

0<i
j € n -1, are defined as follows:

ijs
o = 1 if v; is connected to v;,
Y7 )0 otherwise.

The adjacency matricesfor the graphs in Figs. 10.1(a) and 10.2(a) are shown in Figs.
10.1(b) and 10.2(b), respectively, where v, = a, v, = b, and so on. Note that since the
graph in Fig. 10.1(a) is undirected, the matrix in Fig. 10.1(b) is symmetric.

When each edge of a graph isassociated with areal number, called its weight, the
graph issaid to be weighted. A weighted graph may be directed or undirected. Figure
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(@) ®)
Figure103 Weighted graph and its weight matrix.

10.3(a) shows an undirected weighted graph. The meaning o an edge's weight varies
from one application to another; it may represent distance, cost, time, probability, and
so on. A weight matrix W is used to represent a weighted graph, as shown in Fig.
10.3(b). Here, entry w;; of W represents the weight o edge (v;, v)). If v; and v; are not
connected by an edge, then w;; may be equal to zero, or infinity or any appropriate
value, according to the application.

A pathfrom an origin vertex v; to adestination vertex v; inagraph G = (¥, E),isa
sequence of edges (v;, 1), (Vx, V), . .., (U, v;) from E, where no vertex appears more
than once. In Fig. 10.1, for example, (a, ¢), (c,d), (d,e)isapathfromatoe A cycleisa
path in which the origin and destination are the same. The sequence (a,b), (b, d), (d,a)
in Fig. 10.2formsacycle. In an unweighted graph, thelength of a path or cycleisequal
to the number of edgesforming it.

A subgraph G' = (V',E) d agraph G = (¥, E) isa graph such that V'< V and
E' = E, that is, a graph whose vertices and edges are in G. Figure 10.4 shows two
subgraphs o the graph in Fig. 10.1.

(@) (b)
Figure 104 Two subgraphs of graph in Fig. 10.1.
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10.3 COMPUTING THE CONNECTIVITY MATRIX

The connectivity matrix of an n-nodegraph Gisann x n matrix C whoseelementsare
defined as follows:

. {1 if there is a path of length 0 or more from v; to v,
*~ 0 otherwise,

forj,k=0,1,...,n— 1. Notethat a path of length 0 begins and ends at a vertex
without using any edges, whilea path of length 1 consists of one edge. The matrix C is
also known asthereflexive and transitiveclosure of G. Given the adjacency matrix A o
agraph G, itisrequired to compute C. The approach that we take uses Boolean matrix
multiplication, which differs from regular matrix multiplication in that

(i) the matrices to be multiplied aswell as the product matrix are al binary, that is,
each of their entries is either 0 or 1;
(i) the Boolean (or logical) and operation replaces regular multiplication, that is, 0
and 0=0,0and1=0,1and 0 =0,and 1and 1 =1, and
(iii) theBoolean (orlogical)or operation replacesregular addition, that is,0 or 0 = 0O,
Oorl=11or0=1andlorl=1

Thusif X, ¥, and Z aren x n Boolean matrices where Z is the Boolean product of X
and Y, then

Zij = (xil and yl.l) or (xiz and yzl) or...or (xi,, and y”l) fOI’ i, J = O, l, A 1

Thefirst step in the computation of the connectivity matrix C isto obtain the
n X n matrix B from A asfollows:

by=ap (forj#k) and b;=1

forj,k=0,1,..., n— 1. Matrix B therefore represents all paths in G of length less
than 2; in other words

_ {1 if thereis a path of length 0 or 1 from v; to v,
*7 0 otherwise.

Similarly, B2 (i.e., the Boolean product of B by itself) represents paths o length 2 or
less, B* represents paths of length 4 or less, and B" represents paths of length n or less.

We now observe that if thereisa path from v, to v;, it cannot have length more
than n — 1. Consequently, C = B*~1, that is, the connectivity matrix is obtained after
[log(n — 1)1 Boolean matrix multiplications. Notethat when n — 1isnot a power of 2,
C is obtained from B™, where m = 2flesn=! Thijs is correct since B™ = B! for
m>n-—1.

In order to implement this algorithm in paralel, we can use any o the matrix
multiplication algorithms described in chapter 7 adapted to perform Boolean matrix
multiplication. In particular, procedure CUBE MATRIX MULTIPLICATION can
be used. The resulting algorithm is given in what follows as procedure CUBE
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CONNECTIVITY. The procedure takes the adjacency matrix A asinput and returns
the connectivity matrix C as output. It runs on a cube-connected SIMD computer
with N = n® processors P,, P,, ..., P. The processors can be thought o as being
arranged in an nX nx narray pattern. In this array, P, occupies position (i, j, k),
wherer =in?2 +jn +kand0<ijk<n-11t has three registers A(i, j, K), B(, |, K),
and C(i, j, K). Initialy, the processorsin positions(0, j, k),0 < j, k < n— 1, contain the
adjacency matrix, that is, 4(0, j, K) = a,. At the end of the computation, these
processorscontain the connectivity matrix, that is, C(0, j, k) =cz, 0 <j, k< n- 1L

procedure CUBE CONNECTIVITY (A, C)

Step 1. {Thediagonal elementsdf the adjacency matrix are made equal to 1)
forj =0ton- 1doin paralld
AQ, j, ) <1
end for.

Step 2 {The A regigters are copied into the B registers}
forj =0ton—1doin paralld
for k=0ton—1doin parald
B, j, k) «— A(0, j, k)
end for
end for.

Step 3 {The connectivity matrix is obtained through repeated Boolean multiplication)
for i = 1 to [log(n — 1)1 do
(31 CUBE MATRIX MULTIPLICATION (A, B, C)
B2 forj =0ton—1doin paralld
for k=0ton—1doin parald
() A0, j, k) — C(0, j, k)
(i) B(0, j, k) « C(0, j, k)
end for
end for
end for. O

Analysis. Stepsli, 2, and 32 take constant time. In step 3.1 procedure CUBE
MATRIX MULTIPLICATION requires O(log n) time. This step is iterated logn
times. It follows that the overall running time of this procedure is t(n) = O(log?n).
Since p(n) = n3, ¢(n) = O(n*log?n).

Example 10.1

Consider the adjacency matrix in Fig. 10.2(b). After steps1 and 2 of procedure CUBE
CONNECTIVITY, we have computed

S = o B
S O = -
_ e = O
-0 = O
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The fird iteration d step 3 produces

B? =

O =

S -

—_— =
—_— D = =

while the second yidds B4 = B2

10.4 FINDING CONNECTED COMPONENTS

An undirected graph is said to be connected if for every pair v; and v; of its vertices
thereisa path from v; to v;. A connected component of a graph G isasubgraph G' of G
that is connected. The problem we consider in this section is the following. An
undirected n-node graph G is given by its adjacency matrix, and it is required to
decompose G into the smallest possible number of connected components. We can
solve the problem by first computing the connectivity matrix C of G. Using C, we can
now construct an n x n matrix D whose entries are defined by

o Joe =1,
%710 otherwise,

for 0 <j, k < n- 1 Inother words, row j of D contains the names of the vertices to
which v; is connected by a path, that is, those vertices in the same connected
components as v;. Finally, the graph G can be decomposed into the smallest number
of connected components by assigning each vertex to a component as follows: v, is
assigned to component [ if 1is the smallest index for which d;, # 0.

A paadld implementation of this approach uses procedure CUBE
CONNECTIVITY developed in the previous section to compute the connectivity
matrix C. The algorithm is given in what follows as procedure CUBE
COMPONENTS. The procedure runs on a cube-connected SIMD computer with
N = n® processors, each with three registers A, B, and C. The processors are arranged
inan nx nx narray pattern as explained earlier. Initially, A(0, ], k) = a;, for 0 <j,
k < n— 1, thatis, the processorsin positions(0, j, k) contain the adjacency matrix of
G. When the procedure terminates, C(0, j,0) contains the component number for
vertex »;, where j=0,1,...,n - 1

procedure CUBE COMPONENTS(A, C)

Stepl:  { Compute the connectivity matrix)
CUBE CONNECTIVITY (A,C).

Step 22 { Construct the matrix D}
for j=0ton — 1doin paralld
for k =0ton — 1doin parald
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if C(0,j, k)= 1then C(,j, k) =1,
ed if
end for
end for.

Sep 3 {Assgn a component number to each vertex)
for j=0ton—1doin paralld
(3.2) then processorsin row j (formingalog n-dimensiond cube) find thesmalest
I for which €(0, j,1) #0
(32 €(0,j,0) 1!
end for. [

Analysis. Asshown in the previous section, step 1 requires O(log?n) time.
Steps 2 and 3.2 take constant time. From problem 7.23, we know that step 3.1 can be
donein O(log n) time. The overall running time of procedure CUBE COMPONENTS
is t(n) = O(log?n). Since p(n) = n3, c(n) = O(N°10g7n).

Example 10.2

Consider thegraph in Fg. 10.5(a) whose adjacency and connectivity matricesare givenin

Figs 10.5(b) and (c), respectively. Matrix D is shown in FHg. 10.5(d). The component

assgnment is therefore:

component O: vy, v3, vs, Ug
component 1: vy, vy, v4
component 2 v, vs. [

10.5 ALL-PAIRS SHORTEST PATHS

A directed and weighted graph G = (¥, E) isgiven, asshown, for example, in Fig. 10.6.
For convenience, weshall referin this section to the weight of edge(v;, v;) asits length.

For every pair of verticesv; and v; in V; it is required to find the shortest path
from v; to v; along edges in E. Here the length of a path or cycle is the sum dof the
lengths of the edges forming it. In Fig. 10.6, the shortest path from v, to v, isaong
edges (vg, V3), (v, U3), (13, Vs), (Vs s), and (vs, v,) and has length 6.

Formally, the all-pairs shortest paths problem is stated as follows: An n-vertex
graph Gisgiven by itsn x n weight matrix W; construct an n X nmatrix D such that
d;; isthelength of the shortest path from v; to v; in G for all i and j. We shall assume
that W has positive, zero, or negative entries as long as there is no cycle of negative
length in G.

Let df; denote the length of the shortest path from v; to v; that goes through at
most k — 1intermediate vertices. Thusd}, = w;;, that is, the weight of the edge from v,
tov;. In particular, if thereis no edge from v; to v;, wherei and j are distinct, d},- =
Also d};, = 0. Given that G has no cycles of negative length, there is no advantage in
visiting any vertex more than once in a shortest path from »; to v; (even if our
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Figure 105 Computing connected componentsdf graph.

definition of a path allowed for a vertex to appear more than once on a path). It
follows that d;; = d;*.
In order to compute df; for k > 1 we can use the fact that

dy = min {df? + i),

that is, df; isequal to the smallest d¥> + df!?, over all valuesof I. Thereforematrix D
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Figure 106 Directed and weighted
3 ‘OVG graph.

can be generated from D* by computing D2, D4,..., D"~ ! and then taking D = D" *.
In order to obtain D* from D*? by the preceding expression, we can usea special form
of matrix multiplication in which the standard operations d matrix multiplication,
that is, x and * are replaced by *+ and min, respectively. Hence if a matrix
multiplication procedure is available, it can be modified to generate D"~ ! from D*.
Exactly [log(r — 1)1 such matrix products are required.

Theagorithm isimplementedin parallel usingany o the matrix multiplication
proceduresdescribed in section 7.3 adapted to perform (+, min) multiplication. Once
again, as we did in the previous two sections, we shall invoke procedure CUBE
MATRIX MULTIPLICATION. The resulting algorithm is given in what follows as
procedure CUBE SHORTEST PATHS. The procedure runs on a cube-connected
SIMD computer with N = n® processors, each with three registers A, B, and C. As
before, the processors can be regarded as being arranged in an n X n X n array
pattern. Initially, A(0,j,K)=w; for 0<j, k<n -1, that is, the processors in
positions(0, j, k) contain the weight matrix o G. If v; is not connected to »; or i fj = k,
then wjy = 0. When the procedure terminates, C(0, j, k) contains the length o the
shortest path fromy;toy, for 0<j, k<n-1

procedure CUBE SHORTEST PATHS (A, C)

Siep1: {Condgruct the metrix D' and store it in registers A and B)
for j=0ton — 1doin parald
for k=0ton— 1doin paralld
(1.1) if j # k and A0, j, k)=0
then A(0, j, k)« o
ad if
(1.2) B, j, k) « A, j, k)
end for
end for.
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Step 22 {Construct the matrices D?, D4,..., D"~ ! through repeated matrix multiplication}
for i=1to[logn — 1)] do
(2.1) CUBE MATRIX MULTIPLICATION (A, B, C)

Analysis.

(22) for j=0ton— 1doin parale
for k=0ton— 1doin paralld
(i) A, j, k)< C(0, ), k)
(i) B(O, j, k)« C(0, j, k)

end for
end for

end for. [

Steps 1 and 2.2 take constant time. There are [log(n — 1)]

iterations of step 2.1 each requiring O(log n) time. The overal running time o
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procedure CUBE SHORTEST PATHS is therefore t(n) = O(log™n). Since p(n) = n°,
¢(n) = O(n*10g7n).
Example 103

Matrices D!, D2, D*, and D® for the graph in Fig. 10.6 are shown in Fig. 10.7. ]

10.6 COMPUTING THE MINIMUM SPANNING TREE

A treeis a connected (undirected) graph with no cycles. Given an undirected and
connected graph G = (¥, E), aspanning treeof Gisasubgraph G' = (V', E) o G such
that

(i) G isatree and
(i) V=V

If the graph G isweighted, then a minimum spanning tree (MST) of G has the smallest
edge-weight sum among al spanning trees o G. These definitionsare illustrated in
Fig. 10.8. Three spanning treesd the weighted graph in Fig. 10.8(a) are shown in Figs.

(a) (b)

(© (6))
Figure108 Weighted graph and three of its spanning trees.




262 Graph Theory ~ Chap. 10

10.8(b)—(d). The treein Fig. 10.8(d) hasminimum weight. Note that when all the edges
of the graph have distinct weights, the MST is unique.

If V={vo,v, -..,0,-1}, then the MST has n — 1 edges. These edges must be
chosen among potentially n(n — 1)/2 candidates. This givesan Q(n?) lower bound on
the number of operations required to compute the MST since each edge must be
examined at least once. For convenience, we henceforth refer to the weight of edge
(v;, v;) as the distance separating v; and »; and denote it by dist(v;, v;).

A sequentia algorithm for computing the M ST based on the greedy approach to
problem solving proceedsin stages. Beginning with an arbitrarily chosen vertex, each
stage adds one vertex and an associated edge to the tree. If »; isa vertex that is not yet
in thetree, let ¢(v;) denote a vertex already in the tree that isclosest to v;. The algorithm
therefore consists of two steps:

Step 1 Include vertex v, in the MST and let ¢(v;)) = vy fori=1,2,...,n— 1.
Step 2 Thisstep is repeated as long as there are vertices not yet in the MST:

(21) Include in the tree the closest vertex not yet in the tree; that is, for dl v;
not in the M ST find the edge (v;, c(v;)) for which dist(v;, c¢(v;)) is smallest
and add it to the tree.

(22) For all v; not in the MST, update c(v;); that is, assuming that v; was the
most recently added vertex to the tree, then ¢(v;) can be updated by
determining the smaller of dist(v;, c(v;)) and dist(v;, v;).

Step 1 requires nconstant time operations. Step 2 is executed once for each of
n — 1vertices. If thereare already k verticesin thetree, then steps2.1 and 2.2 consist of
n— k — 1and n — k comparisons, respectively. Thus step 2, and hence the algorithm,
require time proportional to Y ;_} (n — k), which is O(n%). This sequentia running
time is therefore optimal in view o the lower bound stated previously.

We now show how this algorithm can be adapted to run in parallel on an
EREW SM SIMD computer. The paralel implementation uses N processors P,
P,,...,Py_,. The number of processorsisindependent of the number o verticesin G
except that weassume 1 < N < n. Aswedid in earlier chapters, wefind it convenient
to write N=n!"* where 0 < x < 1. Each processor P; is assigned a distinct
subsequence V; of V of size n*. In other words, P; is"in charge” of the verticesin ¥,
Note that P; needs only to store theindicesof thefirst and last verticesin V.. During
the process of constructing the MST and for each vertex v, in ¥; that isnot yet in the
tree, P; also keeps track of the closest vertex in the tree, denoted c(v,).

The weight matrix W of Gisstored in shared memory, wherew,; = dist(v;, v;) for
Li=01,...,n—1Ifi=jorif v, and v; are not directly connected by an edge, then
wy; = co. The algorithm initialy includes an arbitrary vertex in the tree. The
computation of the MST then proceeds in n — 1 stages. During each stage, a new
vertex and hence a new edge are added to the existing partial tree. This is done as
follows. With all processors operating in parallel, each processor finds among its
vertices not yet in the tree the vertex closest to (a vertex in) the tree. Among the n! —*
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verticesthusfound, the vertex closest to (avertex in) the treeisfound and added to the
tree along with the associated edge. This vertex, cal it v, is now made known to al
processors. Thefollowingstep isthen performedin parallel by al processors, each for
its n* vertices: For each vertex v, not yet in the tree, if dist(v,, v,) < dist(v,, c(v,)), then
c(v,) is made equal to v,

The agorithm is given in what follows as procedure EREW MST. The
procedure uses procedures BROADCAST and MINIMUM described in sections
25.1and 6.3.1, respectively. It producesan array TREE in shared memory containing
the n — 1 edgesof the MST. When two distancesare equal, the procedure breaks the
tie arbitrarily.

procedure EREW MST (W, TREE)

Step 1l (1.1) Vertex v, in V, islabeled as a vertex aready in the tree
(12) fori=0toN — 1doin parald
for each vertex v; in ¥; do
c(vy) < vy
end for
end for.

Step2 fori=1ton—1do
(21) forj=0toN —1doin parald
(i) P;findsthe smallest of the quantities dist(v,, c(v,)), wherev, isa vertex in
V; that is not yet in the tree
(i) Let the smallest quantity found in (i) be dist(v,, v): P; delivers a triple
d;, a;, b;), where
d; = dist(v,, v,),
a; =V, and
b;=v,
end for
(22) Using procedure MINIMUM the smallest o the distances d; and its
associated vertices a; and b;, for 0 < j < N — 1, are found, let this triple be
(d,,a,, b), wherea, is some vertex v, not in the tree and b, is some vertex vy
aready in the tree
(2.3) P, assigns(v,, ) to TREE(), the ith entry of array TREE
(24) Using BROADCAST, v, is made known to al N processors
(25) for j=0toN —1doin parald
(i) if v, isin ¥}
then P; labels v, as a vertex already in the tree
end if
(ii) for each vertex v, in V; that is not yet in the tree do
if dist(v,, vy) < dist(v,, c(v,))
then c(v,) « v,
end if
end for
end for
end for. [J
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Analysis. Step 1.1lisdonein constant time. Sinceeach processor isin charge
of n* vertices, step 1.2 requires n* assignments. Therefore step 1 runsin O(n¥)time. In
step 2.1, a processor finds the smallest of n* quantities (sequentialy) using n* — 1
comparisons. Procedures MINIMUM and BROADCAST both involve O(log N)
constant time operations. Since N = n' ™%, steps 2.2 and 2.4 are done in O(log n) time.
Clearly steps 2.3 and 2.5 require constant time and O(n*) time, respectively. Hence
each iteration of step 2 takes O(n) time. Since this step is iterated n+ 1 times, it is
completed in'O(n! **) time. Consequently, the overall runningtime of the procedureis
O(n'**). The procedure is therefore adaptive. Its cost is

e(n) = p(n) x t(n)
=npl=* x O(n'*®)
= O(n?).
This means that the procedure is also cost optimal. Note that, for sufficiently large

n,n* > log n for any xand N = n' ~* = n/n* < n/log n. The procedure's optimality is
therefore limited to the range N < n/log n.

Example 104

Let G be a weighted nine-node graph whose weight matrix is given in Fig. 10.9. Also
assume that an EREW SM SIMD computer with three processors is available. Thus

0 0o 5 6 1 oo 6 10 oo 5
1 5 oo 3 9 2 5 4 12 0o
2 6 3 0o 7 3 9 N o 14
3 1 9 7 o 10 oo oo 9 8
4 0 2 3 10 oo 1 5 3 15
5 6 5 9 00 1 oo 6 13 oo

7 I 9 3 13 4 oo 7

8 5 oo 14 8 15 o 16 7 oo

Figure109 Weight matrix for example 10.4.
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Figure 10.10 Computing minimum spanning tree using procedure EREW MST.

265



266

101

102

103

104

105

106
107

Graph Theory Chap. 10

3=9'"* that is x=0.5. Processors P,, P,, and P, are assigned sequences
Vo = {vo, 1, 02}, Vi = {13, 04, 05}, and V, = {vs, v, v,). Instep 1.1, ve isincluded in the
tree and is assigned as the closest vertex in the tree to all remaining vertices.

During thefirst iteration of step 2, P, determinesthat dist(v,, vo) < dist(v,, vo) and
returns the triple (5,v,, vo). Similarly, P, and P, return (1, vs,v9) and (5,v, ve),
respectively. Procedure MINIMUM is then used to determine v, = v3; and hence
TREE(1) = (v3, vo). Now v ismade known to all processorsusing BROADCAST and P,
labelsit asa vertexin thetree. In step 2.5, P4 keepsc(vy) and o(v,) equal to vy, P, updates
c(vy) 1o v3 but keeps c{vs) = vy, and P, keeps c(vg) = v, and c(vg) = 0 while updating
¢(v4) = v3. The process continues until the tree (vs, vg), (vy, Vo), (V4 V1) (U5, D), (02, V1),
(v4, vy), (ve, v1), (vg, 1) is generated. Thisisillustrated in Fig. 10.10. [

10.7 PROBLEMS

Show that procedure CUBE CONNECTIVITY isnot cost optimal. Can the procedure's
cost be reduced?
Derivea parallée algorithm to compute the connectivity matrix of an n-vertex graph in
O(n) time on an n x n mesh-connected SIM D computer.
Consider a CRCW SM SIMD computer with n® processors. Simultaneous write
operations to the same memory location are alowed provided that al the values to be
written are the same. Give an algorithm to compute the connectivity matrix of an n-
vertex graph on this computer in O(log n) time.
Let A be the adjacency matrix of an n-vertex graph G. Another way of computing the
connectivity matrix C of G sequentially is given by thefollowing algorithm. Initially Cis
set equal to A.
Stepl: fori=0ton—1do
ci—1
end for.

Step2 fook=0ton-1do
fori=0ton-1do
forj=0ton—1do
if cx=1andc,; =1
then ¢;; « 1
end if
ad for
end for
ad for.

Derive a parallel verson d this algorithm for an interconnection-network SIMD
compulter.

Show that if the connected components of a graph are given, then itsconnectivity matrix
can be obtained trivialy.

Repeat problem 10.1 for procedure CUBE COMPONENTS.

Another approach to computing the connected components of a graph is based on the
idea of breadth-first search. Beginning with a vertex, its neighbors (i.e., &l the verticesto
which it is connected by an edge) are visited. The neighbors of each of these vertices gre
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now visited, and the process continues until no unvisited neighbor isleft. Thisgivesone
connected component. We now pick a vertex (outside of this component) and find its
connected component. Continuing in this fashion, all the connected components can be
found. Derive a parallel implementation of this approach.

108 Consider the following approach to computing the connected components of a graph,
which in a sense is symmetric to the one described in problem 10.7. Here vertices are
collapsed instead of expanded. Pairs of vertices that are connected by an edge are
combined into supervertices. Supervertices are now themselves combined into new (and
larger) supervertices. The process continues until al the vertices in a given connected
component have been combined into one supervertex. Derive a parallel implementation
of this approach.

109 Establish the validity o the relation

d% = min{d¥? + 4/}
|

upon which procedure CUBE SHORTEST PATHS is based.
1010 Repeat problem 10.1 for procedure CUBE SHORTEST PATHS.

1011 Modify procedure CUBE SHORTEST PATHS to provide a list o the edges on the
shortest path from v; to v, for dl 0 <j,k <n-1

1012 Derivean algorithm for the model of computation in problem 10.3to compute all-pairs
shortest paths in O(log n) time.

1013 Let W bethe weight matrix of an n-vertex graph G, withw;; = 0 and w;; = o if thereisno
edgefrom v; to v;. Consider the following sequential method for computing the all-pairs
shortest paths matrix D. Initially, D is set equal to W.

foor k=0ton—1do
fori=0ton—1do
forj=0ton—1do
d;; — min{d
end for
end for
end for.

dy T dy}

ijs

Design a paralel implementation of this algorithm on an interconnection-network
SIMD computer.

10.14 Discuss the feasibility of the following approach to computing the MST of a weighted
graph G: All spanning trees of G are examined and the one with minimum weight is
selected.

1015 Procedure EREW MST is cost optimal when N < r%log n Can this range of optimality
be widened?

10.16 Adapt procedure EREW MST to run on an interconnection-network SIM D computer.

1017 Derivea paralel agorithm based on the following approach to computing the MST of a
weighted n-vertex graph G.

Step 1 Theedgesof G are sorted in order of increasing weight.

Step 2 Then — 1 edgeswith smallest weight that do not includea cycle are selected
as the edgesof the MST.
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Consider the following approach to computing the MST of an n-vertex weighted graph
G.

Step1: fori=0ton—1do

(1.1) Determinefor vertex v; itsclosest neighbor v;; if two or more vertices are
equidistant from v;, then v; is the one with the smallest index

(1.2) The edge (v;, v;) is designated as an edge of the MST

end for.

Step 2 (2.1) k< number of distinct edges designated in step 1

(2.2) Each collection of vertices and edges selected in step 1 and forming a
connected component is called a subtree of the MST.

Step3: whilek <n— 1do

10.19

10.20

10.21

10.22
10.23
10.24
10.25
10.26

(32) Let Ty, T5, ..., T,, be the distinct subtrees formed so far
(32 fori=1tomdo
(i) Using an appropriate tie-breaking rule, select for 7; an edge of
smallest weight connecting a vertex in 7; to a vertex in any other
subtree T;
(i) This edge is designated as an MST edge and the two subtrees it
connects are coalesced into one subtree
end for
(3.3) k « k * number of distinct edges selected in 3.2
end while.

Applying thisapproach to the weight matrix in Fig. 10.9, we get the following edges after
step 1: (vg, D3}, (01, V4)s (2, 01)s (V45 Vs), (U6, V1)s (04, v4), and (vg, v). These form two
subtrees T; = {{vg, v3), (vg, Vo)} and T; = {(vy, vy), (v3, 1), (v4, 15), (Vs, vy), (v7, vy)}. Since
k = 7, we execute step 3 and find that the edge of smallest weight connecting 7, to T, is
{ve, v1)- Design a parallel algorithm based on the preceding approach for the problem of
determining the MST and analyze its performance.

Assumethat the n vertices of an undirected weighted graph G are pointsin k-dimensional
Euclidean space, k > 2, with w;; = Euclidean distance separating »; and v;. The graph is
therefore fully defined by a list of n vertices, each vertex being represented by its k
coordinates. This meansthat the weight matrix is not required as part of the input since
w;; can be computed when needed. Implement the MST algorithm in section 10.6 on a
tree-connected SIMD computer with n leaves to run in O(nlog n) time.

Show that by reducing the number of leaves in the tree-connected SIMD computer of
problem 10.19, a cost-optimal algorithm can be obtained.

An undirected n-vertex graph is said to be sparse if it has m edges, where m is much
smaller than the maximum possible n(n — 1)/2 edges. Design a CREW algorithm for
computing the MST of a weighted sparse n-vertex graph in O(mlog»/N) time using N
processors, where N < log n, and the approach described in problem 10.17.

Can the algorithm in problem 10.21 be modified to have a cost of O(mlog m)?

Repeat problem 10.21 for the approach in problem 10.18 with N < m/log n.

Repeat problem 10.21 for the approach in section 10.6 with N log N < (m log n)/n.
Can the algorithms in problems 10.23 and 10.24 be modified to have a cost of O(m)?

Repeat problems 10.21-10.25 for the EREW SM SIMD model.
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10.27

10.28

10.29

10.30

10.31

10.32

10.33

10.34

10.35

10.36

10.37

10.38

10.39

Let G = (¥, E) beadirected graph. A strong component of G isasubgraph G' = (V', E'y
Gsuchthat thereisa path from every vertexin V' to every other vertexin v’ along edges
in E. Design a parallel algorithm for decomposing a given directed graph into the
smallest possible number of strong components.

A week component of a directed graph G is asubgraph G' of G whereevery two vertices
are joined by a path in which the direction of each edge isignored. Design a parallel
agorithm for decomposing a given directed graph into the smallest number of weak
components.

A biconnected component of an undirected graph G = (¥, E) is a connected component
G' = (V', E') such that the deletion of any vertex of ¥ does not disconnect G. Design a
parallel algorithm for decomposing a given undirected graph into the smallest possible
number of biconnected components.

Let G be an undirected graph. A bridge in G is an edge whose removal divides one
connected component into two. Design a parallel algorithm for finding the bridges of a
given graph.

An articulation point of a connected undirected graph G is a vertex whose removal splits
G into two or more connected components. Design a parallel algorithm to determine all
the articulation points of a given graph.

Consider thefollowing variant of the all-pairs shortest paths problem: Given a specified
vertex in a weighted directed graph, it is required to find the shortest path from that
vertex to every other vertex in the graph. Thisis known as the single-source shortest path
problem. Design a parallel agorithm for this problem and analyze its running time and
cost.

Let G bean unweighted undirected graph. Itisdesired to obtain aspanning treeof G. Use
the parallel algorithm designed in problem 10.32 to solve this problem.

Another variant of the all-pairs shortest path problem is the al-pairs longest path
problem. Derive a parallel algorithm for this problem.

Let G be a directed graph with no cycles. It is required to sort the verticesof G into a
sequence vy, vy, ..., v, Such that (v;, v;) may be an arc of G only if i < j. Suggest two
parallel solutions to this problem known as topological sorting. One solution may be
based on the reflexiveand transitive closure of G, the other on the matrix of all-pairs
shortest paths.

The diameter of a weighted graph G is the length of the shortest path separating the
farthest two verticesof G. The center of G isthe vertexfor which thelength of the shortest
path to the farthest vertex issmallest. This distance is called the radius of G. Show how
the diameter, center, and radius of an n-vertex weighted graph can be obtained in
O(log?n) time on a cube-connected computer with n® processors.

The median of a weighted graph isthe vertex for which the sum of the shortest pathsto all
other verticesis smallest. Derive a paralléel agorithm to find the median.

Let G be a directed and weighted graph with no cycles. We assume that w;; = 0 in the
weight matrix W if the arc (v;, v;) is not present. The gain on a path from v, to v, is the
product of thearc weightson that path. A maximum gain matrix H issuch that k;; equals
themaximum gain for every i and j. Derivea parallel algorithm for computing the matrix
H from W.

Let G be an n-vertex undirected graph, and define the length of a cycle as the number of
edgesit contains (asin section 10.2).
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(i) Derive a parallel algorithm for determining the shortest cycle in O(n) time on an
n X n mesh-connected SIMD computer.

(i) Repeat part (i) for an undirected graph.

Thecyclicindex of adirected graph G isthe greatest common divisor of the lengthsof dl

the cyclesin G. Design a parallel agorithm for computing the cyclic index.

An undirected graph is bipartiteif and only if it has no cycled odd length. Show that it is
possible to determine whether an n-vertex graph is bipartite in O(r) timeonan n x n
mesh-connected SIMD computer.

Let G=(V,E) be a connected undirected graph. Further, let H=(V4,E) and
K =(, E) be two subgraphs of G. The symmetric difference of H and K, written
H @ K, isthesubgraph G’ = (V', E') of G whereE' isthe set of edgesin Ey v Eg but not
in E; ~E, and V' isthe set of vertices connected by edgesin E. A set of fundamental
cyclesdf Gisacollection Fd cyclesdf G with the property that any cycle C of G can be
writtenasC=C,; ® C, @ ... ® C,, for some subcollection of cyclesC, C,, ..., C, of F.
Design a CREW agorithm for determining the set of fundamental cycles of an n-vertex
graph in O(log’n) time using O(n®) processors.

A matchingin an undirected graph G = (¥, E)isasubset M of E such that no two edgesin
M share a vertex. A matching has maximum cardinality if no other matching in G
contains more edges. Design a parallel agorithm for finding a maximum-cardinality
matching.

Repeat problem 10.43 for the case where G is bipartite.

A matching of G = (¥, E) issaid to be pefect if it includes al the verticesin V. Assume
that G is a 2n-vertex graph that is weighted and complete (i.e., every two vertices are
connected by an edge). Design a parallel algorithm for finding a perfect matching of G
that has minimum weight.

Let G beadirected and weighted graph where each edge weight is positive. Two vertices
of G are distinguished as the source and the sink. Each edge may be thought of as a
conduit for fluid, and the edge's weight determines how much fluid it can carry. The
network flow problem asks for the maximum quantity of fluid that could flow from source
to sink. Design a parallel algorithm for this problem.

The dead-end path problem is defined as follows: Given a graph G=(V,E) and a
distinguished vertex », find a path starting from » that cannot be extended without going
to a vertex that isaready on the path. A greedy sequential algorithm for this problem is
to start at v and aways go to the lowest numbered unvisited neighbor. Can this
algorithm be implemented efficiently in parallel? s there a fast parallel algorithm that
computes the same dead-end path as the sequential algorithm?

Let G bea directed graph with no cycles. We say that G islayered if its nodesarelaid out
inlevels,its edgesgoing only between consecutivelayers. The maximal set d digoint paths
problemis to find the largest set possible of paths from the first leve to the last with no
vertices in common. Describe a greedy algorithm for this problem and determine
whether it can be implemented efficiently in parallel.

A Hamilton cycle of an undirected graph G = (V; E) is a cycle that includes al the
elements of V. Design a parallel algorithm for determining whether a given graph has a
Hamilton cycle.

An undirected and weighted graph G is given where all the edge weights are positive
integers. A positiveinteger Bisalso given. It isrequired to determine whether G possesses
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a Hamilton cycle whose weight is no larger than B. This is known as the traveling
salesman problem, where the vertices represent cities and the edge weights distances
separating them. Design a parallel algorithm for solving this problem.

10.8 BIBLIOGRAPHICAL REMARKS

Descriptions of many sequential graph algorithms can be found in [Christofides]|, [Deo 1],
[Even], and [Papadimitriou]. Graph-theoretic algorithms for parallel computers are surveyed
in [Quinn 2]. Textbook treatment of parallel graph algorithms is provided in [Kronsjé],
[Quinn 1], and [Uliman].

Parallel agorithms for computing the connectivity matrix aregivenin[Chin], [Guibas],
[Hirschberg 1], [Hirschberg 2], [Kucera], [Levitt], and[Van Scoy]. In particular, it is shown
in [Hirschberg 1] how an n®-processor CRCW SM SIMD computer can be used to compute
the reflexiveand transitive closure of an n-vertex graph in O(log n) time.

Various approaches to solving the connected-components problem in paralel are
proposed in [Chin], [Hirschberg 1], [Hirschberg 2], [Hochschild 1], [Hochschild 2],
[Kugera],[Lakhani], [Nassimi], [Nath 1],[Nath 2],[Reghbati], and[Shiloach 1]. Notably, it
isshown in[Chin] how a CREW SM SIM D computer with O(n?/log?n) processorscan be used
to find the connected components of an n-vertex graph in O(log?n)time.

Parallel algorithms for solving the all-pairs shortest path problem on a number of
different models of computation are described in [Dekel 1], [Deo 2], and [Hirschberg 1]. The
algorithm in [Hirschberg 17 uses an n*-processor CRCW SM SIMD computer and runs in
O(log n) time. The idea of procedure CUBE SHORTEST PATHS originated in [Dekel 1].

Several approachesfor computing the minimum spanningtreein parallel are describedin
[Atallah], [Bentley], [Chin], [Deo 3], [Doshi], [Gallager], [Hirschberg 1], [Hirschberg 3],
[Hochschild 1], [Hochschild 2], [Kugera], [Kwan], [Nath 1], [Nath 2], [Santoro],
[Savage 1], and [Savage 2]. In particular, it isshown in[Doshi] how the approach in problem
10.18 can be used to compute the MST of an n-vertex weighted graph on alinear array of N
processors, where 1 < N < n. The agorithm runsin O(n?/N) time for an optimal cost of O(r?).
This algorithm is superior to procedure EREW MST in two respects:

1 It achieves the same performance on a much weaker model of computation.
2 It has a wider range of optimality.

Procedure EREW MST is from [AklI], where a number of references to parallel MST
agorithms are provided.

Other graph-theoretic problems that were solved in paralle include finding bicon-
nected components ([Hirschberg 1], [Hochschild 1], [Hochschild 2], and [Savage 2J), tri-
connected components([Ja’Ja’]), strongly connected components([Hochschild 2], [K osaraju],
and [Levitt]), and weskly connected components ([Chin]); single-source shortest paths
([Chandy], [Crane], [Deo 23, and [Mateti]); all-pairslongest paths ([Hirschberg 17); topolog-
ical sorting ([Er], [Hirschberg 1], and [Kucera]); constructing spanning trees and forests
([Bhatt], [Chin], [Dekell], and [Levitt]); contracting trees ([Leiserson]); determining the
radius, diameter, center, median, articulation points, and bridges ([Atallah], [Deke 1],
[Doshi], and [Savage 2]) computing maximum gains ([Dekel 17); searching and traversing
graphs ([Chang], [Kalra], [Kosaraju], [Reghbati], and [Wyllie]); testing planarity
([Hochschild 2], and [Ja’Ja’]); computing matchings ([ Dekel 2], and [Hembold]); finding the
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cyclic index ([Atallah]), fundamental cycles ([Levitt] and Savage 21), cycles of shortest length
([Atallah]), and maximal sets of disjoint paths ([Anderson]); computing flows in networks
([Chen 1], [Chen 2], [Goldberg], and [Shiloach 2]); and testing whether a graph is bipartite
([Atallah]).

Thecellular array model of parallel computation wasfirst proposed in[Kautz] and then
used in [Levitt] for solving graph-theoretic problems. It consists of a large number of simple
processorsinterconnected to form atwo-dimensional array. The concept of acellular array was
later rediscovered and renamed systolic array in [Foster].

The dead-end path problem and the maximal set of disjoint paths problem belong to the
class of P-complete problems. These problems are believed not to have fast parallel solutions.
Furthermore, if a fast parallel algorithm is found for one of these problems, then al the
problems in the class are amenable to fast parallel solution ([Anderson] and [Cook]). Note
that, according to this theory, a parallel algorithm is fast if it uses O(n°) processors for some
¢ = 0 and runsin O(log‘n) time for some constant k > 0. The class o problems solved by such
fast algorithms is nicknamed in the literature as N C ([Cook]).

Let = bea problem of size n, where n may be the number of vertices in a graph, rowsin a
matrix, or elements of a sequence. An algorithm for solving = is said to be polynomia if its
running timeisof O(n*) for some constant k > 0. An algorithm is exponential if it runs in O(c")
for some constant ¢ > 2. The Hamilton cycle and traveling salesman problems belong to the
class of NP-complete problems. A problem = in this class has the following characteristics:

()  no sequential algorithm with polynomial running time is known for solving n and,
furthermore, it is not known whether such an algorithm exists;

(i) all known sequential algorithms for solving n have exponential running time and it is not
known whether thisis optimal;

(i) if asolution to ais given, it can be verified in polynomial time; and
(i) if asequential polynomial timealgorithmisfound for solving =, it can be used to solveall
NP-complete problems in polynomial time.

A good reference to NP-complete problems is[Garey]. Parallel algorithms for NP-complete
problems help only a little in mitigating the exponential growth in the running time. To have a
truly fast parallel algorithm that is based on our current state of knowledge, one needs an
exponential number of processors. This is prohibitive, to say the least, and we must await a
better understanding of the nature of NP-complete problems before embarking in the design of
parallel algorithms for large-problem instances. Parallel algorithms for NP-complete graph
problems are described in[Mead] and [Mohan].
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Computational Geometry

11.1 INTRODUCTION

278

Computational geometry isa branch of computer sicenceconcerned with the study of
efficient algorithms for problems involving geometric objects. Examples of such
problems include:

1. Inclusion problems. locating a point in a planar subdivision, reporting which
points among a given set are contained in a specified domain, and so on.

2. Intersection problems: finding intersections of line segments, polygons, circles,
rectangles, polyhedra, half spaces, and so on.

3. Proximity problems. determining the closest pair among a set of given points or
among the verticesof a polygon; computing the smallest distancefrom oneset of
points to another; and so on.

4. Construction problems: identifying the convex hull of a polygon, obtaining the
smallest box that includes a set of points, and so on.

These problems arise naturally, not only in the obvious application areas such as
image analysis, pattern recognition, pattern classification, computer graphics,
computer-aided design, and robotics, but also in statistics, operations research, and
database search.

There is a wealth of sequential and parallel algorithms for computational
geometry developed mainly over the last fifteen years. The overwhelming majority of
these algorithms address well-understood problems in the Euclidean plane, that is,
problems involving points, lines, polygons, and circles. Problemsin higher dimensions
are largely unexplored and remain as the major challenge for researchers in the field.

In this chapter we describe a number of parallel algorithms for fundamental
problemsin computational geometry. With only oneexception, al our algorithms are
for the two-dimensional case. In section 11.2 we begin by examining the problem of
how to determine whether a point fallsinside a polygon. Our solution is then used to
address the more general problem of locating a point in a planar subdivision. Section
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11. 3 deals with the problem of finding out whether two polygons intersect. In section
11.4 we show how to identify the closest pair among a given set of points in d
dimensions, whered = 1 Finally, section 11.5 isdevoted to the problem of computing
the convex hull of a finite set of pointsin the plane.

For each problem addressed in this chapter, a paralel algorithm is described
that runs on an interconnection-network SIMD computer where the processors are
linked to form a mesh of trees. This architecture is particularly suited to exhibit the
paralelism inherent in geometric problems. Since the mesh of trees solutions use the
same basic ideas, we present only the first of these in detail and give high-level
descriptions of the remaining three. Our solutions are generally simple and fast.
Perhaps their only disadvantage is the relatively large number of processors they
require. Therefore, we show in section 11.5 that a more powerful model, such as the
shared-memory SIMD computer, may be needed to achieve cost optimality and a
sublinear running time while using only a sublinear number of processors.

11.2 AN INCLUSION PROBLEM

A graph issaid to be planar if it can be drawn in the plane so that no two of itsedges
intersect. If theedgesare drawn as straight-line segments, the resulting drawing of the
graph is called a planar subdivison. As shown in Fig. 11.1, a planar subdivision
consists of a collection of adjacent polygons. These polygons are said to be smple,
meaning that no two edges of a polygon intersect, except at a vertex. The problem we

Figure111 Point insde planar subdivision.
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address in this section is the following: Given a planar subdivision and a point p,
determine which polygon (if any) contains p; otherwise report that p fals outside the
planar subdivision. A situation in which this problem needs to be solved is pattern
recognition, whereit isrequired to assign a given object to one of several classes. For
example, a robot may wish to determine whether an object it is facing is a chair, a
person, a dog, or a plant. Each classis described by a region in some space, and the
points inside the region represent objects in that class. Points are given by their
coordinatesin space, each coordinate being the value of an object feature. In order to
classify a new object, it suffices to identify the region in which the point representing
the object fals. In Fig. 11.1 the spaceis two-dimensional and the regionsare polygons.

In order to solvethe point location problem stated in the preceding, we begin by
considering the more fundamental question: Given a simple polygon Q with n > 3
edges and a point p, does p fal inside Q?

11.2.1 Point in Polygon

The basic idea behind our first parallel algorithm isillustrated in Fig. 11.2. Assume
that a vertical lineisdrawn through point p. Next, theintersection points between this
line and the edges of Q arefound. If the number of such intersection points above pis
odd, then p is inside Q; otherwise it is outside Q. This test can be performed

Figure 112 Test for point inclusion
inside polygon.
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sequentially in O(n) stepsfor a polygon with nedges, and thisis clearly optimal since
Q(n) steps are needed to read the input.

We can implement this test on a tree-connected SIMD computer as follows.
Since Q has nedges, the tree consistsof nprocessorsP,, P, ..., P,. The processorsare
numbered beginning from the root and proceeding, level by level, from left to right.
Thustheroot is P, itschildren P, and P, and so on. Each processor stores an edge of
Q given by the Cartesian coordinates of itstwoendpoints. Initially theroot readsthe x
and y coordinates o p, namely, (x,,y,), and broadcasts them to al the other
processors. When a processor P; receives the coordinates o p, it determineswhether

(i) avertica linethrough p(cal it L,) intersectstheedgedf Q it stores(cal it e;) and
(i) the intersection point is located above p.

If these two conditions hold, the processor produces a 1 as output. Otherwise it
produces a 0. The processors outputs are now added, and if the sum is odd, p is
declared to beinside Q. The algorithm is given in what follows as procedure POINT
IN POLYGON. It is assumed that each processor P; aready contains e;. Two
additional variables a; and s; in P; serve in computing the total number of
intersectionsabove p. At theend o the procedure P, producesan answer equal to 1 if
p isinside Q and equal to 0 otherwise.

procedure POINT IN POLYGON (x,, ¥,, anSNer)

Sep 1 (1.1) P, reads(x,, y,)
(1.2)if L, intersectse, above p
then s, « 1
eses, <0
end if
(13) P, SENUS(x,, ¥,, 5,) 10 P, and (x,, ¥,, 0) tO P,

Siep2  for i =logn T 1) — 2 downto 1 do
for | = 2lostn+ 1)=1-i g o+ =i _ 1 o in parallel
(2.1) P; recaives(x,, y,, S from its parent
(2.2) if L, intersectse; above p
thens;« 1
elses; <0
end if
(2.3) P;sends (x,, v, 5; T 5)t0 Py; and (x,, y,, 0) 1O Py
end for
end for.

Step 3 for j =2"8F0-1 tg lestn+ 1) _ 1 doin paralld
(3.1) P; recaives (x,, ,, s) from its parent
(3.2)if L, intersects e; above p
theng; s +1
elseag; s
end if
end for.
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Step4 fori=1tologn+ 1) — 1do

for | = Jlotn+ D=1 g Jlegm+1)=i _ 1 go in paralle
;¢ ay;+ Azj4
end for
end for.

Step 5: if a, isodd
then answer « 1
else answer « 0
endif. O

Analysis. Theprocedureconsists of two stages: the descent stage (steps 1-3),
where dl the intersection tests are performed, and the ascent stage (steps4 and 5),
where the total nhumber of intersections above p is computed. It takes a constant
number of operations to test whether a straight line and a straight-line segment
intersect. Given that the tree has n processors, both the descent and ascent stages
take O(log n) time. Since p(n) = n, ¢(n) = O(nlog n), which is not optimal.

Example 11.1

Theedgesd the polygonin Fig. 11.2 are stored in a tree-connected computer with seven
processors, as shown in Fig. 11.3. For the input point p of Fig. 11.2, only processors P,
P,, and P, produce a 1 as output, and the root declaresp to beinside Q. [

Three points are worth noting:

1 Several points p can be tested for inclusion in a polygon Q by pipelining
procedure POINT IN POLY GON. Indeed, once a processor has performed its
test (and sent to itsleft child the partial total of the number of intersectionsabove p)
it is free to receive the next point. It is with this pipelining in mind that the
procedure was designed, so that partial totals never stay in a given processor

Py 10,2

\

5 | (7.1) Py le3)

PN

4 [®7) Pe | (56) Ps | (4.5) P, 13.4)

P

Figure11.3 Testing point inclusion using procedure POINT IN POLY GON.
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but are constantly moving either downward or upward. The period is therefore
constant.

2 The procedure can be easily modified to handle the case where there are more
(or fewer) processorsthan polygon edges.

3. Itispossibleto modify the procedureto achieveoptimal cost. Theideaisto use
nflogn processors each storing logn edges o Q. It takes O(log(n/log n)) time to
broadcast the coordinates of p to al processors. Each processor now performs
the intersection test for al logn edges it stores and adds up the number o
intersectionsabove p in O(log n) time. The total number of intersectionsabove p
is computed in O(log(n/logn)) time. The overal running time is O(logn) as
before. However, the period is no longer constant.

11.2.2 Point in Planar Subdivision

We are now ready to addressthe more genera problem of locatinga point in a planar
subdivision.Our parallel algorithm uses the mesh d trees architecture (introduced in
problem 4.2 and first used in section 9.2.2). Assume that the planar subdivision
consistsof mpolygons, each with at most nedges. We usean m x nmesh. Each o the
m rows, numbered 1, ..., m isa binary tree o processorsstoring the edges o one
polygon, one edge per processor. Each o the ncolumns, numbered 1, ..., n,isalsoa
binary tree (although in this context we shall only make use of the treein column 1).

Theidea o the algorithm is to feed the coordinates of the query point p to the
root processor of every row tree. This can be done using the tree connections in
column 1. Procedure POINT IN POLY GON isnow performed simultaneously by al
rows. The procedureis dightly modified so that

(i) when it starts, the root processor in every row aready contains (x,, y,), and
(i) whenit terminates, the root processor in row i producesthe pair (1, i) as output
if p isinside the associated polygon; otherwise it produces (0, i).

By using the tree connectionsin column 1 and the logical or operation on the first
components o the output pairs, either

(i) the (unique) polygon containing p can be identified or
(i) thefact that p is not inside any o the polygons can be established.

Theagorithmisgivenin what followsas procedure POINT IN SUBDIVISION. The
processor in row i and column j is denoted P(i, j). The output pair for root processor
P(i, 1) isdenoted (a,, b;), where a; iseither 0 or 1 and b, is a row number.
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procedure POINT IN SUBDIVISION (x,, y,, a;, by)
Step 1 P(1, 1) reads(x,, y,)-
Step 2: for i =log(m* 1) — 1 downto 1 do

for j = lestm+1-1-i 40 20" TD7F — 1 doin paralld
P(j, 1) sends(x,, y,) to P(2j, 1) and P2j * 1, 1)
end for
end for.

Step 3 for i = 1tomdoin paralld
Processors P(i, 1) to P(i, n) execute POINT IN POLY GON

end for.
Step 4 fori=1tologm* 1)— ldo _
for j = glogm+ 1)~ 1~i ¢ Hlogm+ =i __ 1 40 IN paralld
ifay,; =1

then (a;, b;) < (ay;, b))
deseif ayj4y=1
then (a;, b)) < (azj+ 1, b2j+1)
end if
end if
end for
end for.

Step 5 P(1, 1) produces(a,, by) asoutput. [

Note that when the procedure terminates, if a, = 1, then this means that the polygon
numbered b, contains p. Otherwise a, = 0, in which case p is outside of the planar
subdivision.

Example 11.2
Thesubdivisonin Fig. 11.1 requiresa7 x 6 mesh d trees, asshown in Fig. 11.4 (where
the tree connections are omitted for smplicity).When the coordinatesd point pin Fig.
11.1 are given as input to the mesh d trees, row 3 produces(1, 3} while dl other rows
produce (0, i), i # 3. Thus (1, 3) is the mesh's output. [

Analysis. Stepsland 5 runinconstant time. Steps2 and 3 take O(log m) and
O(log n) time, respectively. Step 4 also requires O(log m) time. Assuming that mis O(n),
t(n) = O(log n). Since p(n) = n?, the procedure's cost is c(n) = O(n?log n). This cost is
not optimal given that a sequential algorithm that applies the O(n) polygon inclusion
test to each of the m polygons runs in O(n?) time.

If k points p are queued for processing, they can be pipelined and the procedure
would require Ok * logn) time to answer al k queries. Finally, using the same
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INPUT/QUTPUT
— (1,2) (2,3) (3.4) (4,5) (5,6) (6,1)

(5.4) (4,6) (6,5)

(4.7) (7.8) (8,4) (9,6) (6.4)

(3,14) (14,7) (7,4) (4,3)

(7,14) (14,12) (12,8) (8,7)

(3,13) (13,12) (12,14) (14,3)

(3,10) (10,11) (11,12) (12,13) (13.3)

Figure 114 Testing point inclusion using procedure POINT IN SUBDIVISION.

approach as with procedure POINT IN POLYGON, procedure POINT IN
SUBDIVISION can be made to have a cost of O(n?).Thisisillustrated in the next
section.

11.3 AN INTERSECTION PROBLEM

In many applications, it is required to determine whether a set of geometric objects
intersect. Thus, for example,

() in pattern classification it is necessary to determine whether different regionsin
space representing different classes have common subregions;
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(i) in integrated circuit design it is important to avoid crossing wires and
overlapping components; and

(iif) in computer graphics it isrequired to remove hidden lines and hidden surfaces
from two-dimensional representations of three-dimensional scenes.

In this section we examine one such intersection problem.

Two polygons Q and R are said to intersect if an edge of Q crossesan edge of R.
Notethat the two polygons need not besimple, that is, two or more edges of Q (or two
or moreedgesaof R) may cross. Figure 11.5illustrates two intersecting polygons. Let Q
and R be two polygons, each given by a list of its edges. It is required to determine
whether Q and R intersect. Our paralel solution to this problem is based on a
straightforward approach: For each edge of Q we determine whether it crosses one o
the edges of R. Assume that Q and R have m and n edges, respectively, each being
given by the coordinates of its two endpoints. We use a mesh o trees with m rowsand
nflog n columns. Each processor is loaded with logn edges of R so that

(i) the set of edges contained in a row is the set of edges of R and
(ii) the processors in each column contain the same subset of logn edges of R.

L oading the processorsin each column isdone by pipelining the log n edges assigned
to that column through itsroot processor. When a processor receivesan edge, it stores
itinitsown memory and sendsacopy o it to each of its two children using the tree
connections in that column. It therefore takes O(log m)+ O(log n) time to load a
column. If al columns are loaded simultaneously, then this would aso be the time
taken to load the entire mesh. In addition, each processor receivesan edge of Q so that

(i) the set of edges contained in a column is the set of edges of Q and
(ii) the processors in each row contain the same edge of Q.

Figure 115 Two intersecting polygons
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The edges of Q arefed into the mesh, one edge per row, through the root processor in
each row. When a processor in a given row receivesthe edge assigned to that row, it
storesit in itsown memory and sendsa copy of it to each of itstwo children, using the
tree connectionsin that row. It takes log(n/log n) steps to load a row. If al rows are
loaded simultaneously, then thiswould also be the time taken to load the entire mesh.

Now each processor tests whether the edge of Q assigned to it crosses one of the
log nedgesdf R it also contains. If thisisthecase, it produces a 1 as output; otherwise
it producesa 0. With all processors operating simultaneously, this step takes O(log n)
time.

The outputs in each row are combined level by level, beginning from the leaves
and all the way to the row's root processor. This is accomplished by requiring each
processor to computethelogical or of three quantities: the twoinputsreceivedfrom its
children and its own output. The processor then sends the result of this operation to
its parent. After log(n/logn) steps the root processor in each row would have
computed thelogica or of al outputsin that row, whichit retains. These processors
combine their results in the same way using the tree connectionsin column 1. This
requires another log m steps.

Assuming that m < n the overall running time of the algorithm is

t(n) = O(log ).

Since p(n) = O(n?/log n), thealgorithm's cost is O(n?). The only known lower bound on
the number of steps required to solve this problem isthe trivial one of Q(n) operations
performed while reading theinput. Furthermore, it is not known whether a sequential
algorithm exists with a smaller than quadratic running time. The algorithm's cost
optimality is therefore an open question.

11.4 A PROXIMITY PROBLEM

Proximity problems arise in many applications where physical or mathematical
objects are represented as points in space. Examples include the following:

(i) clustering: a number of entities are grouped together if they are sufficiently close
to one another;
(i) classification: a new pattern to be classified is assigned to the class of its closest
(classified) neighbor; and
(iii) air-traffic control: thetwo airplanes that are closest are the two most in danger.

One such proximity problem, that of finding the closest pair among a set of points, is
addressed in this section.

Let Sbeaset of npointsin d-dimensional space, where each point isgiven by its
d coordinates (x,, X, ..., xg). Thedistance between two points(x,, x,, ..., xz) and (x},
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X5 ..., xy) O Sisdefined as

d 1/q
(Z abs(x; — Xi-)") ,
i=1

where q is a positive integer. The value of g depends on the application. Thus, q =2
corresponds to the usual Euclidean distance. For agiven g, it isrequired to determine
the closest pair of pointsin S.

A parallel solution to this problem can be modeled after the algorithm in the
previous section. We use a mesh of trees with n/logn columns and n rows. Each
processor holds the coordinates of logn points. All the processors in a column hold
the same logn points. The n points held by a row of processorsare equal to theset S.
I'n addition, the coordinates of the ith point of S, cdll it p;, arefed to the processorsin
the ith row. A processor in the ith row computes the distance between p; and each o
thelog n points it wasfirst assigned. It then reports the closest pair and the distance
separating them. By using the row trees and then the tree in column 1, the overal
closest pair of points arefinally determined. Thealgorithm runsin O(log n) time. Since
p(n) = n?/logn, o(n) = O(n?). It is not known whether the algorithm is optimal with
arbitrary d and/or g for the same reasons given in the previous section.

11.5 A CONSTRUCTION PROBLEM

Givenaset S= {p,, p,, ..., p} Of pointsin the plane, the convex hull of S, denoted
CH(S), isthe smallest convex polygon that includesall the points of S. A set of points
is shown in Fig. 11.6(a); its convex hull is illustrated in Fig. 11.6(b). Note that the
verticesof CH(S) are points of S. Thus every point of Siseither a vertex of CH(S) or
liesinside CH(S). Thefollowinganal ogy is useful. Assumethat the points of Sare nails
driven halfway into a wooden board. A rubber band isnow stretched around theset of

@ ®
Figure 116 Set of pointsin plane and its convex hull.
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nails and then released. When the band settles, it has the shape of a polygon: Those
nails touching the band at the corners of that polygon are the verticesaf the convex
hull.

Applications of convex hulls abound. They include:

(i) statistics(e.g., when estimating the mean of a set of points, the convex hull o the
set allows a robust estimate to be obtained since the vertices of the hull may
represent outliers that can be ignored);

(i) picture processing (e.g., the concavities in a digitized picture are found by
constructing the convex hull);

(iii) pattern recognition (e.g., the convex hull of a visual pattern serves as a feature
describing the shape of the pattern);

(iv) classification (e.g., theconvex hull of a set of objects delineates the classto which
these aobjects belong);

(v) computer graphics({e.g., clusters of points are displayed using their convex hull);
and

(vi) geometric problems [e.g., thefarthest two points of a set S are verticesof CH(S)].

In this section we are concerned with developing parallel algorithms for the
prablem of identifying the verticesof CH(S). We begin by deriving alower bound on
the number of steps required to solve the problem. Thisisfollowed by a brief outline
of a sequential algorithm whose running time matches the lower bound and is
therefore optimal. Two parallel algorithms are then presented, one for the mesh o
trees and the other for the EREW SM SIMD computer.

11.5.1 Lower Bound

A powerful technique for proving lower bounds on the number of steps required to
solve computational problems is that of problem reduction. Let A and B be two
computational problems. A lower bound is known for B; it is required to prove a
lower bound for A. If we can show that an algorithm for solving A—adong with a
transformation on problem instances— could be used to construct an algorithm to
solve B, then the lower bound on B also applies to A. Thisisillustrated in Fig. 11.7.

We now use problem reduction to derive a lower bound on computing the
convex hull. Let problems A and B be defined

A = find the convex hull CH(S) of a set S of n points in the plane;

B = sort a sequence of n numbers in nondecreasing order.

Note that problem A requires us to find the convex hull of S and not merely its
vertices. M ore specifically, an algorithm to solve A must return a polygon, that is, alist
of verticesin the order in which they appear on the perimeter of CH(S).

Let CONVEX HULL be an algorithm for solving A. We also know from
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ALGORITHM FOR A

SOLVES B

LOWER BOUND FOR B

Figure 11.7 Method of problem reduc-
APPLIES TO A tion for proving lower bounds.

example 1.10 that a lower bound on the number of steps required to solve B in the
worst caseis Q(nlog n). Now, say that the input to Bisthe sequence X = {x,,x,,...,
X,y In order for X to become an input to CONVEX HULL, the following
transformation is used. First, the elements of X are mapped, each in constant time,
into the semiopen interval [0, 2xn) using a one-to-one function f. Thus, fori =1,2,...,
n, 6; = f(x;) represents an angle. For every 6, a planar point is created whose polar
coordinates are (1, 8,). The resulting set of points

S={(1,6),(1,6,),....(1,6,)}

hasall its members on the circumference of acircle of unit radius, and CH(S) includes
al the pointsof S,asshownin Fig. 11.8.If CONVEX HULL isappliedto S, its output

Figure 11.8 Deriving lower bound on convex hull computation.
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would bealist o themembersof Ssorted on the 6;, that is, in angular order. A sorted
sequence X can now be obtained in linear time using the inverse transformation
x; = f ~1(6;). Since sorting n numbers requiresQ(n log n) stepsin the worst case, we are
forced to concludethat thesamelower bound appliesto computing the convex hull o
n points.

11.5.2 Sequential Solution

Our purposein this section is to show that the R(nlog n) lower bound just derived is
tight. To this purpose we briefly sketch a sequential algorithm for computing the
convex hull of aset of npoints. The agorithm runsin O(nlog n) time and istherefore
optimal. It is based on the algorithm design technique of divide and conquer. The
agorithm is given in what follows as procedure SEQUENTIAL CONVEX HULL.
The proceduretakesS= (p,, p, ..., P.} @sinput and returns alist CH(S) containing
the verticesd the convex hull of S

procedure SEQUENTIAL CONVEX HULL (S,CH(S))

if Scontains less than four points
then CH(S) « S
dse(1) {Divide)
Divide Sarbitrarily into two subsets §; and S, of approximately equal size
(2) (Conquer)
(2.1) SEQUENTIAL CONVEX HULL (S,, CH(S,))
(2.2) SEQUENTIAL CONVEX HULL (8,, CH(S,))
(3) {Merge}
Merge CH(S,) and CH(S,) into one convex polygon to obtain CH(S)
edif. O

The most important step in the algorithm is the merge operation. Here we have
two convex polygons CH(S,) and CH(S,) that are to be combined into one convex
polygon CH(S). An exampleisillustrated in Fig. 11.9. In this case, the two polygons
can be merged in three steps:

1 find an upper tangent (a, b) and a lower tangent (c, d);
2 delete points e and f of CH(S,) and g of CH(S,); and
3 return CH(S) asthelist (i, a, b, h, d, ¢).

In generd, if CH(S;) and CH(S,) contain O(n) verticesin dl, then CH(S) can be
computed in O(n) time.

We now analyzethe running time t(n) of procedure SEQUENTIAL CONVEX
HULL. Each of the conquer steps 21 and 2.2 is recursive, thus requiring t(n/2) time.
Steps 1 and 3 are linear. Therefore,

tin) = 2t(n/2) + cn
where ¢ is a constant. It followsthat #n) = O(nlog n), which is optimal.
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a b

d

Figure 119 Merging two convex polygons into one.
11.5.3 Mesh of Trees Solution

Assumethat aset S = {p,, p, ..., p,} Of pointsin the planeisgiven, where each point
is represented by its Cartesian coordinates, that is, p; = (x;, y;). Our first parallel
algorithm for computing CH(S) is designed to run on a mesh of trees SIM D computer.
In order to avoid cluttering our presentation with "hairy" details, we make the
following two simplifying assumptions.

() no two points have the same X or y coordinates and
(i) no three pointsfdl on the same straight line.

Once we have described the approach upon which our algorithm is based, it will
become obvious how to modify it to deal with situations where the preceding

assumptionsdo not hold. We begin by explaining three ideas that are central to our
solution.

1. Identifying Extreme Points. Assume that the extreme points, that is,
the points with maximum x coordinate, maximum y coordinate, minimum X
coordinate, and minimum y coordinatein S, have been determined as shown in Fig.
11.10. Call these points XMAX, YMAX, XMIN, and YMIN, respectively.

Three facts are obvious:

(i) The extreme points are vertices of CH(S);

(i) any points faling inside the quadrilateral formed by the extreme points is
definitely not a vertex of CH(S); and
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REGION 3 YMAX REGION 2
\

XMAX

°1
YMIN \

REGION 4 REGION 1
Figure 11.10 Extreme points d planar set.

(iii) the problem of identifying CH(S) has been reduced tofindingaconvex polygonal
path joining two extreme points in each of the regions 1, 2, 3, and 4; CH(S) is
obtained by linking these four paths.

2. ldentifying Hull Edges. A segment (p;, p;) is an edge of CH(S) if and
only if al then — 2 remaining points of S fal on the same side of an infinite straight
linedrawn through p; and p;. This property isillustrated in Fig. 11.11, where(a,b)isa
convex hull edge while (c,d) and (e,f ) are not. Note that this allows us to conclude
that both a and b are vertices of CH(S).

3. Identifying the Smallest Angle. Let p; and p; be consecutive vertices
of CH(S) and assume that p; is taken as the origin o coordinates. Then, among all
points d S, p; forms the smallest angle with p; with respect to the (either positive or
negative) x axis. Thisisillustrated in Fig. 11.12.

We are now ready to present our algorithm. Assume that a mesh o trees is
availableconsisting of n rowsand n columns of processors. The processor in row i and

column j is denoted P(,j). For i=1,2,...,n, P(,j) contains the coordinates
(%;, y;). Thus,

(i) all the processorsin a column contain the coordinates of thesame point of S and
(i) the coordinates contained in a row form the set S={(x,, y1), (X2, ¥2)s...,
(Xns Ya)}-




Figure 11.11 Property of convex hull
edges.

Figure 11.12 Property of consecutive
convex hull vertices.
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The algorithm consists of the following stages.
Stage 1

(i) The processorsin rows 1, 2, 3, and 4 compute XMAX, YMAX, XMIN, and
YMIN and store their coordinates in P(l, 1), P(2, 1), P(3, 1), and P(4, 1),
respectively.

(i) Using the tree connections, first in column 1 and then in row 1, the coordinates
of the four extreme points are made known to all processorsin row 1.

Stage 2

(i) Thefour processorsin row 1 corresponding to the extreme points produceal as
output [indicating these points are vertices of CH(S)].

(i) All processorsin row 1 corresponding to pointsinside the quadrilateral formed
by the extreme points produce a 0 [indicating these points are not vertices o
CH(S) and should therefore be removed from further consideration].

(iii) Each of the remaining processors P(1,j) in row 1identifiesthe region (1, 2, 3, or
4) in which point p; falls and communicates this information to all processors
P(i,j) in column j.

(iv) XMAX is assigned to region 1, YMAX to region 2, XMIN to region 3, and
YMIN to region 4.

Stage 3

If processor P(1, i) corresponding to point p; o S produced neither a1 nor a0 in stage
2, then the following steps are executed by the processorsin row i

(i) The point p; (in the same region as p;) is found such that (p;, p;) forms the
smallest angle with respect to
(@ the positivex axisif p;isin regions 1 or 2 or
(b) the negativex axisif p; isin regions 3 or 4.

(ii) If al remaining points(inthe sameregionas p; and p;) fall on thesamesidedf an
infinite straight line through p; and p;, then p; is a vertex of CH(S).

Stage 4

(i) If p; wasidentified as a vertex of CH(S) in stage 3, then P(l, i) producesa 1 as
output; otherwiseit produces a 0.

(ii) An arbitrary point in the planeischosen inside the quadrilateral whose corners
are the extreme points. This point (which need not be a point o S) is designated
as an origin for polar coordinates. The polar angles formed by al points
identified as vertices of CH(S) are computed.
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(iii) Theanglescomputed in (ii)are sorted in increasing order using the mesh of trees
(see problem 4.2). This gives the convex hull verticeslisted in counterclockwise
order, exactly in the sequence in which they appear along the boundary of
CH(S).

Analysis. Each o the four stages requires O(logn) operations. Thus
t(n) = O(log n). Since p(n) = n?, the algorithm's cost is O(n?log n), whichis not optimal.
Asin previous sections the cost can be reduced to O(n?) by using n rows o n/logn
processors each. This cost is still not optimal in view of the O(nlogn) sequential
algorithm described in section 11.5.2.

11.5.4 Optimal Solution

In this section we describe an optimal paralel algorithm for computing the convex
hull. The algorithm is designed to run on an EREW SM SIMD computer with
N = n' "= processors, 0 < z < 1. As before, each point p; of S={p,, ps, ..., Pa} IS
given by its Cartesian coordinates (x;, y;), and we continue to assume for clarity of
presentation that no two points have the same x or y coordinates and that no three
pointsfal onastraight line. A high-level description of the algorithm isfirst presented.
Let XMIN and XMAX denote, as before, the points with minimum and
maximum X coordinates, respectively. As Fig. 11.13 illustrates, CH(S) consists of two
parts: an upper convex polygonal path from XMIN to XMAX (solidlines)and a lower
onefrom XMAX to XMIN (broken lines). Given these two polygonal paths, they can
be concatenated to yield CH(S). The algorithm is given in what followsas procedure
EREW CONVEX HULL. It takes the points of Sasinput and returns a list CH(S) of
the vertices of CH(S) in the order in which they appear on the convex hull of S.

XMAX
XMIN

Figure 11.13 Upper and lower convex polygonal paths.
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procedure EREW CONVEX HULL (S, CH(S))

Step 1 (1.1) xmin « index of XMIN in §
(1.2) XmaX « index of XMAX in S.

Step 2. UP(S) « ligt of vertices on the upper convex polygonal path from prmin tO Pxmax-
Step 3:  LP(S) « list of vertices on the lower convex polygonal path from pymax 10 Pemin-

Step 4: (4.1) LP(S) « list LP(S) With pypmax @nd pymin removed
(4.2) CH(S) « list UP(S) followed by list LP(S). []

This procedure as described is rather vague and requires a good deal of refinement.
We can dispose immediately to steps 1 and 4. Step 1 can be implemented using
procedure PARALLEL SELECT, which, as we know from chapter 2, uses n!~*
processorsand runsin O(n?) time. There aretwo operationsin step 4: deleting thefirst
and last elementsof LP(S) and linking the remaining ones with UP(S). Both can be
performed in constant time by a single processor. This leaves us with steps 2 and 3
Clearly, any algorithm for step 2 can be easily modified to carry out step 3 We
therefore concentrate on refining step 2.

Finding the Upper Hull. Analgorithm for constructing the upper convex
polygonal path (upper path, for short) can be obtained by making use of thefollowing
property: If avertical lineisdrawn somewhere between p,pmin 8Nd Pemax SO that it does
not go through a convex hull vertex, then this line crosses exactly one edge o the
upper path. Theagorithm first placesa vertical lineL dividing S into two setsS,.q, and
S.igne OF @pproximately the samesize. The uniqueedgedf the upper path intersecting L
is now determined as shown in Fig. 11.14. This edgeis called a bridge (from Sy, to
S,ignd)- The agorithm is then applied recursively to S.e, and S,ign,- It is interesting to
note here that like procedure SEQUENTIAL CONVEX HULL this agorithm is
based on the divide-and-conquer principle for algorithm design. However, while
procedure SEQUENTIAL CONVEX HULL divides, conquers, and then merges, this
agorithm divides (into Sy, and S,;,), merges (by finding the bridge), and then
conquers (by recursing on Sieg, aNd Syignt)-

Idedlly, in a paralel implementation of thisidea, the two recursive steps should
be executed simultaneously since each of the two subproblems Sy, and Syign, has the
same structure as the original problem S. Unfortunately, thisis impossiblesince the
number of available processors is not sufficient to provide a proper recursive
execution of the algorithm. To see this, note that each o Sy, and S,ign, CONtains
approximately n/2 points and thus requires(n/2)* ~# processors. Thisislarger than the
n' ~#/2 processorsthat would be assigned to each of 8¢, and S,y if the two recursive
steps were to be executed simultaneously. Therefore, we resort instead to a solution
similar to the one used in the caseof EREW SORT inchapter 4. Let k = 214171 First,
2k — 1verticd linesL,, L,, ..., L,,_, arefound that divide Sinto 2k subsetssS;,i = 1,
2,..., 2k of sze n/2k each. These subsets are such that

Sleflzsluszu.”usk and Sright:Sk+l uSk+2U~--USZk.
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Figure11.14 Bridge

In the next step, edge(a,, b;) of the upper path that crosses vertical lineL;, i = 1,
2,...,2k — 1,isobtained. (Hereboth a; and b; are elements of S; we usea and binstead
of p to avoid multiple subscripts.) The algorithm is now applied recursively and in
paralel to S, S, ..., S, using (n* ~%)/k processors per subset. The same is then done
for Sy, Sks25---5S,. Theagorithm isgiven in what follows as procedure UPPER
HULL. The procedure takes the set Sand two points p, and p, asinput. It produces
the upper path from p, to p, asoutput. Initialy, it is called from procedure EREW
CONVEX HULL with p, = pmin @d P, = Pypmax-

procedure UPPER HULL (S, p;, p,)

if IS} <2k
then find the upper path from p, to p, using SEQUENTIAL CONVEX HULL
else(1) find 2k— 1 vertical linesL,, L,,. .., L,;—, that divide S into Sy, S,,...,S5%
(2) for i =1to2k- 1do
find edge(a, ,b;) of the upper path intersecting line L;

end for
(3) { Construct upper path for S;.s}
(3.1) if p, =4,

then p, is produced as output
ese UPPER HULL (S,,p,, a,)
end if
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(3.2)for j =2tok doin paralle
ifb_y=a
then b;_, is produced as output
elseif a;_, # q;
then UPPER HULL (S}, b;_,, a;)
end if
end if
end for
(4){Construct upper path for S,;u}
(4.1)for j =k + 1to 2k — 1 doin parallel
ifb,_, =a
then &;_, is produced as output
eseif a;_, # q;
then UPPER HULL (S}, b;_4, a))
end if
end if
end for
(4.2)if byy_1 = py
tben b,;_, is produced as output
else UPPER HULL (Szs bax—1, P))
end if

endif.

Step 1 can beimplemented using procedure PARALLEL SELECT. Steps 3 and
4 are recursive. It remainsto show how step 2 is performed. The following procedure
BRIDGE (S A) takesaset Sof n pointsand areal number A asinput and returns two
points a; and b; where (a;, b;) is the unique edge o the upper path intersecting the
vertical line L; whose equation isx = A.
procedure BRIDGE (S, A)

Step L

Step 2:
Step 3:

Step 4

Step 5:

The points of Sare paired up into couples (p,, p,) such that x, < x,. The ordered
pairs define Ln/2] straight lines whose slopes are {sy, sz, ..., Sis/2)}-

Find the median K o theset {s,,s;,...,S2,}-

Find a straight line Q of slope K that contains at least one point of S but has no
point of Sabove it.

if Q contains two points of S, one on each side of L,
then return these as (a,,b,)
elseif Q contains no points of S
then for every straight line through (p,, p,) with slopelarger than or equal to K
S S_{p.}
elseif Q contains no points of Sy,
then for every straight line through (p,, p,) with slope less than or equal to

K
S8 _{p.}
end if
end if
end if.

BRIDGE (S,A). O
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We now describe how this procedure isimplemented in parallel and analyze its
running time, which we denote by B(n). Step 1 is performed in parallel by assigning
different subsets of S of size n? to the n' ~* processors, each of which creates | #*/2 ]
pairs of points(p,, p) and computes the slopes of the straight lines they form. Step 1
thus requires O(n) time. Step 2 can be implemented using procedure PARALLEL
SELECT in O(n®) time. Step 3 is executed by finding the (at most two) points
maximizing the quantity y; — Kx;. Thisquantity can be obtained for all valuesofj by
having each processor compute it for the points in its assigned subset o S. The
maximum of these quantitiesisfound using procedure PARALLEL SELECT. Hence
step 3 aso runs in O(n?) time. Finally, in step 4, determining whether Q contains the
required edge can be done by one processor in constant time. Otherwise, the value of
K is broadcast to al n'"* processors in Oflogn' ™% time using procedure
BROADCAST. Each processor compares K to the | n?/2] slopesit has computed in
step 1 and updates S accordingly; this requires O(n®) time. Step 4 therefore runs in
O(n?) time. Since one-quarter o the points are discarded in step 4, the complexity o
step 5 is B(3n/4). Thus, for some constant c;,

B(n) = ¢;n* + B(3n/4)

whose solution is B(n) = O(r?).

Analysis. Weare now in a position to analyze procedure EREW CONVEX
HULL. As mentioned earlier, steps 1 and 4 run in O(n?) and O(1) time, respectively.
Let h and h,; be the number of edges of the upper and lower convex polygona paths,
respectively. We denote the running times o steps 2 and 3 by Fy(n, h) and Fp(n, h,),
respectively. Thus, the running time of procedure EREW CONVEX HULL isgiven
by

tn) = c,n* + Fy(n, h) + F.(n, h) + e,

for two constants ¢, and ¢;. From our discussion of procedure UPPER HULL, we
have

Fy(n, hy) = cyn* + max {max [Fu(S;l, h)1 + max  [Fy(S;l, hj)]}
B+ ho=hy (1<i<k k+1<j<2j

where h,, h,, and h; are the number of edges on the upper path associated with S,.y,,
S.iene> @nd §;, respectively, and ¢, is a constant. Therefore

Fy(n, hy) = O(n*log hy),
and similarly
Fi(n, h;) = O(n*logh,).

It follows that «(n) = O(?logh), where h= h, + h,. Thus the procedure's running
time not only adapts to the number of available processors, but is also sensitiveto h,
the number of edges on the convex hull. In the worst case, of course, h=n, and
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t(n) = O(n“logn). Since p(n) = n' ~%, the procedure has a cost of

¢(n) = O(nlogn),

whichisoptimal in view d the Q(nlogn) lower bound derived in section 11.5.1. Since
n* > logn for all z and sufficiently large n, optimality is achieved when N < n/flogn

Example 11.3

Assumethat four processors are available on an EREW SM SIM D computer. We apply
procedure EREW CONVEX HULL to the set of points in Fig. 11.13. Since n = 16 and
N =4, N = n' > yiddsx = 05. Furthermore, k = 2""*171 = 2. In Ste€P 1, Pxmin AN Pymax
are determined. In step 2, procedure UPPER HULL isinvoked to find the upper path.

Procedure UPPER HULL begins by placing 2k — 1 (i.e., three) vertical lines L,,
L,, and L, dividing the set into four subsets S, §,, S5, and S,, as shown in Fig. 11.15.

The bridge crossing each vertical line is now computed by procedure BRIDGE.
Thisisshown in Fig. 11.16.

Since pymin # @1, Procedure UPPER HULL is caled recursively to obtain the
upper path from p.... t0 a,. Given that |S,| < 4, the path isfound sequentially (and the
recursion terminates). Similarly, since b, = a,, there is no need to recurse with §,.
Continuing in thisfashion, b, isfound equal to a,, and the upper path from b3 t0 pymay iS

®
® Pxmax
pxmin i ®

s, S, S, s,

Figure11.15 Dividing given planar set into four subsets.
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Figure11.16 Finding three bridges.

obtained sequentially. This yields the upper path from p, ., 10 p,max depicted in Fig.
1113

In step 3, the lower convex polygonal path isfound in the same way, and the two
paths are linked to produce the convex hull as shown in Fig. 11.13. O

11.6 PROBLEMS

Describe formally a (constant-time) sequential algorithm for determining whether a
straight-line segment (given by the coordinates of its endpoints) and a vertical straight
line (through a given point) intersect.

Procedure POINT IN POLY GON ignores the following degenerate situations:

(i) the vertical line through point p passes through verticesof polygon Q,

(i) the vertical line through p coincides with edges of Q (i.e., Q has vertical edges),and
(iii) p coincides with a vertex of Q [this is a special case of (ii)].
Suggest how the procedure can be modified to handle these situations.
A planar subdivision with n polygons of O(n) edges each is given. Show that once a
preprocessing step requiring O(n*10gn) time is performed, the location of an arbitrary
data point in the subdivision can be determined in O(log n) time. Adapt thisalgorithm to
run on a parallel computer.
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Does procedure POINT IN SUBDIVISION extend to subdivisions of spaces in
dimensions higher than 2? What about the algorithm in problem 11.3?

Describe formally a (constant-time) sequential agorithm for determining whether two
straight-line segments (given by the coordinates of their endpoints) cross.
Giveaforma statement of the parallel agorithm in section 11.3 for determining whether
two polygons intersect.

Modify thealgorithm in problem 11.6 so it producesone pair of crossingedgesin casethe
two input polygons intersect.

Modify thealgorithm in problem 11.6 so it producesall pairs of crossingedgesin casethe
two input polygonsintersect. What is the running time of your algorithm?
Two smple polygons of n edges each are said to intersect if either

(i) one of the two contains the other or
(i) an edge of one crosses an edge of the other.

Show that it is possibleto determine sequentially whether two simple polygonsintersect
in O(nlog n) time.

Derive a parallel algorithm based on the approach in problem 11.9.

Give a formal statement of the paralel algorithm in section 11.4 for determining the
closest pair of a set.

The algorithm in problem 11.11 uses (n%/logn) processors. Show that this number can be
reduced to n(n — 1)/21og n without any increase in the algorithm's running time.

Show that if the Euclidean distance is used, then the closest pair can be determined
sequentially in O(nlogn) time.

Derive a parallel algorithm based on the approach in problem 11.13.

In section 11.5.2 we stated without proof that two convex polygonswith a total of O(n)
verticescan be merged sequentially into one convex polygon in O(n) time. Show how this
can be done.

Propose a parallel implementation of procedure SEQUENTIAL CONVEX HULL.
Give a formal statement of the parallel algorithm in section 11.5.3 for determining the
convex hull of a set of planar points.
Show how to modify the algorithm in problem 11.17 to handle the following specia
cases:

(i) two points have the same x or y coordinates and
(i) three or more points fall on the same straight line.
Show how to modify the algorithm in problem 11.17 to handle the cases where there are
fewer than four extreme points, that is, when two or more extreme points coincide (e.g.,
XMAX = YMAX).
Asstated in section 11.5.3, the algorithm for computing the convex hull relies heavily on
the ability to measure angles. Show how to implement the algorithm so that no angle
computation is necessary.

The mesh of trees architecture was used to solve al problems in this chapter. One
characteristic of this architecture is that the edges of the trees(linking the rows and the
columns) grow in length as they move further from the root. This has two potential
disadvantages:

(i) The architecture is neither regular nor modular (in the sense of section 1.34.2).
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(i) If the propagation timefor a datum along awire is taken to belinearly proportional
to the length of that wire, then our running time analyses (which assume constant
propagation time) no longer hold. (For a similar discussion see the conclusion of
section 5.3.2)

Suggest other architectures for solving the problemsin sections 11.2-11.5 that enjoy the

efficiency of the mesh of trees but do not share its disadvantages.

Given a set § of points in the plane, design a parallel algorithm for computing CH(S)
based on the following property of convex hull vertices: A point P; of S belongs to CH(S)
if p; does not fall inside the triangle (p;, px» p) formed by any three points of S.
Given a set S of points in the plane, design a parallel algorithm for computing CH(S)
based on thefollowing property of convex hull edges: A segment (p;, p;) isa convex hull
edgeif all theremaining n — 2 pointsfall in the same of the two half planes defined by the
infinite straight line through p; and p;.

Describein detail how the linking of UP(S) and LP(S) to obtain CH(S) is performed in
step 4 of procedure EREW CONVEX HULL.

Describein detail how the 2k — 1 vertical linesL,, L,,..., L., - thatdivideSintoS,, S,,
..+, S, are obtained in step 1 of procedure UPPER HULL.

Describeformally how procedure UPPER HUL L producesits output. Specifically, show
how UP(S) is formed.

Modify procedure UPPER HULL toincludethefollowing refinement: Once a bridge(a;,
b)) is found, all points falling between the two vertical lines through a; and b; can be
discarded from further consideration as potential upper hull vertices.

Derivea CREW SM SIM D algorithm for computing the convex hull of a set of n points
in the plane in O(log n) time using n processors.

Can you design an EREW SM SIMD algorithm with the same properties as the
algorithm in problem 11.28?

Design a parallel algorithm for computing the convex hull of a set of points in a three-
dimensional space.

Two sets of pointsin the plane are said to be linearly separable if a straight line can be
found such that the two setsare on different sides of the line. Design a parallel algorithm
for testing linear separability.

Given a set S of n points, design a paralel algorithm for computing a Euclidean
minimum spanning tree of § (i.e, @ minimum spanning tree, as defined in chapter 10,
linking the points of S with rectilinear edges such that the weight of an edge is the
Euclidean distance between its endpoints).

Given a set § of 2n points in the plane, design a parallel algorithm for computing a
Euclidean minimum-weight perfect matching of S (i.e, a minimum-weight perfect
matching, as defined in chapter 10, whose edges are straight-line segments linking pairs
of pointsof § and the weight of an edgeis the Euclidean distance between its endpoints).
A simple polygon Q and two points s and d inside Q are given. The interior shortest path
problem is to determine the shortest path from s to d that lies completely inside Q. Givea
parallel algorithm for solving this problem.

In problem 3.16 we defined a parallel architecture called the pyramid, which is a binary
tree with the processors at each level connected to form a linear array. We may refer to
this as a one-dimensional pyramid and extend the concept to higher dimensions. For
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Figure 11.17 Two-dimensond pyramid.

example, a two-dimensiond pyramid consists of $r — 4 processors distributed among
1+ log,n levels, wheren isapower of 4. All processorsat the samelevel are connected to
form a mesh. There are n processors at levd 0 (also caled the base) arranged in an
n'? x n'/2 mesh. There is only one processor at level log,n (also caled the apex). In
general, at level i,0 < i < log,n, the mesh consists of n/4' processors. A processor at leve
i, in addition to being connected to its four neighbors at the same leve, also has
connections to

(i) four children at level i — 1 provided i = 1 and

(ii) one parent at level i + 1, provided i < (logsn) — 1.

A two-dimensiona pyramid for n = 16 is shown in Fig. 11.17. As described in example
1.7, a picturecan be viewed asa two-dimensional array of pixels. For example, each pixe
may begiven avaluerepresenting the color of a corresponding (small)areain the picture.
The positionof a pixel is given by its coordinates (i, j) ,wherei and j are row and column
numbers, respectively. A set Sof pixelsissaid to be convex if CH(S) does not contain any
pixel not belongingto S. Figure 11.18showstwo setsaf pixels(identified by an x ); the set
in Fig. 11.18(a) isconvex, whiletheonein Fig. 11.18(b) is not. Design a parallel algorithm
for the two-dimensional pyramid to determine whether a set of pixelsis convex.

This problem is about general polygons, that is, polygons two or more of whose edges
may cross. We refer to theseas polygonsfor short. This classincludessimple polygonsas
a subclass.

(i) Give a definition of the interior of a polygon.

(ii) Design a test for point inclusion in a polygon.

o o e e o o o
[} ] e X X X L
. [ ] e X o X X
N4 . e X e X X
X e X e o o

o o = = = = o Figurel1.18 Two stsd pixels.




306 Computational Geometry Chap. 11

(iii) Design a test for polygon inclusion in a polygon.

{iv) Design a test for polygon intersection (of which inclusion is a specia case).
(v) Are thereéfficient parallel versions of (ii)—(iv)?

(vi) Are there applications where nonsimple polygons arise?

11.7 BIBLIOGRAPHICAL REMARKS

Good introductions to sequential algorithms for computational geometry are provided in
[Led], [Mehlhorn], and [Preparata]. Severa parallel algorithmsfor the four problem classes
discussed in this chapter have been proposed. They include

(i) algorithms for inclusion problems, in [Atallah 2], [Boxer], and [Chazell¢];

(i) algorithmsfor intersection problems, in [Aggarwal], [Atallah 2], [Chazelle], [Miller 5],
and [Shih];

(iit) algorithms for proximity problems in [Aggarwal], [Atallah 1], [Boxer], [Chazell€],
[Dehne 2], [Dyer], [Miller 1], [Miller 31, and [Miller 5]; and

(iv) algorithmsfor construction problems, in[Aggarwal], [Akl 13, [Akl 2], [Akl 3], [Atallah
2], [Boxer], [Chang], [Chazelle], [Chow 1], [Chow 2], [Dadoun], [Dehne 1],
(ElGindy], [Miller 13, [Miller 2], [Miller 31, [Miller 5], and [Nath].

A branch of computer science known as pattern recognition studies how computers can
be made to recognizevisual patterns. It coversa wide range of concerns from the processing of
digital picturesto the analysis of patterns that leads eventually to their classification. The role
computational geometry can play in pattern recognition isrecognizedin [Toussaint]. Parallel
architectures and algorithms for pattern recognition are described in [Dehne 27, [Dehne 3],
[Holt], [Ibrahim], [Kung 1], [Kung 2], [Li], [Miller 2], [Miller 3], [Miller 4], [Preston],
[Reeves], [Sankar], [Siegd 1], [Siege 2], [Siege 3], [Sklansky], and [Snyder].

11.8 REFERENCES

[AGGARWAL]
Aggarwal, A, Chazelle, B., Guibas, L. J, O’Dinlaing, C., and Yap, C. K., Paralel
computational geometry, Proceedings of the 26th Annual | EEE Symposium on Foundations
of Computer Science, Portland, Oregon, October 1985, pp. 468-477, IEEE Computer
Saociety, Washington, D.C., 1985.

[AkL 1]
Akl, S G., A constant-time parallel algorithm for computing convex hulls, BIT, Vol. 22, No.
2, 1982, pp. 130-134.

[AkL 2]
Akl, S. G., Optimal parallel agorithms for computing convex hulls and for sorting,
Computing, Vol. 33, No. 1, 1984, pp. 1-11.

[AkL 3]
Akl, S G., Optimal parallel algorithms for selection, sorting, and computing convex hulls, in
Toussaint, G. T., Ed., Computational Geometry, North-Holland, Amsterdam, 1985, pp. 1-22.



Sec. 11.8 References 307

[ATALLAH 1]
Atallah, M. J,, and Goodrich, M. T., Efficient parallel solutions to some geometric problems,
Journal of Parallel and Distributed Computing, Vol. 3, 1986, pp. 492-507.

[ATALLAH 2]
Atallah, M. J, and Goodrich, M. T., Efficient plane sweepingin parallel, Proceedings of the
2nd Annual ACM Symposium on Computational Geometry, Y orktown Heights, N.Y., June
1986, pp. 216-225, Association for Computing Machinery, New York, N.Y., 1986.

[BOXER]
Boxer, L., and Miller, R, Paralel dynamic computational geometry, Technical Report No.
87-11, Department of Computer Science, State University of New York, Buffdo, N.Y.,
August 1987.

[CHANG]
Chang, R. C, and Leg, R. C. T., An O(N log N)minimal spanningtree algorithm for N points
in the plane, BIT, Vol. 26, No. 1, 1986, pp. 7-16.

[CHAZELLE]
Chazelle, B, Computational geometry on a systolic chip, |IEEE Transactionson Computers,
Vol. C-33, No. 9, September 1984, pp. 774-785.

[CHow 1]
Chow, A. L., Paralel algorithms for geometric problems, Ph.D. thesis, Department of
Computer Science, University of lllinois, Urbana—Champaign, Illinois, 1980.

[CHow 2]
Chow, A. L., A pardlel agorithm for determining convex hulls of sets of points in two
dimensions, Proceedings of the 19th Allerton Conferenceon Communication, Control and
Computing, Monticello, lllinois, October 1981, pp. 214-223, University o Illinois, Urbana—
Champaign, Illinois, 1981.

[Daboun]
Dadoun, N., and Kirkpatrick, D. G., Paraléel processing for efficient subdivision search,
Proceedings of the 3rd Annual ACM Symposium on Computational Geometry, Waterl oo,
Ontario, Canada, June 1987, pp. 205-214, Association for Computing Machinery, New
York, N.Y., 1987.

[DEHNE 1]
Dehne, F., O(n'/?) algorithms for the maximal elementsand ECDF searching problem on a
mesh-connected parallel computer, Information Processing Letters, Vol. 22, No. 6, May 1986,
pp. 303-306.

[DEHNE 2]
Dehne, F., Parallel computational geometry and clustering methods, Technical Report No.
SCS-TR-104, School o Computer Science, Carleton University, Ottawa, Ontario, December
1986.

[DEeHNE 3]
Dehne, F., Sack, J-R., and Santoro, N., Computing on a systolic screen: Hulls, contours and
applications, Technical Report No. SCS-TR-102, School of Computer Science, Carleton
University, Ottawa, Ontario, October 1986.

[DYER]
Dyer, C. R, A fast parald algorithm for the closest pair problem, Information Processing
Letters, Vol. 11, No. 1, August 1980, pp. 49-52.



308 Computational Geometry Chap. 11

[ELGINDY]
ElGindy, H., A paralel algorithm for the shortest-path problem in monotonic polygons,
Technical Report No. MS-CIS-86-49, Department of Computer and Information Science,
University of Pennsylvania, Philadel phia, June 1986.

[HoLT]
Holt, C. M., Stewart, A., Clint, M., and Perrott, R. H., An improved paralel thinning
algorithm, Communications of the ACM, Vol. 30, No. 2, February 1987, pp. 156-160.

[IBRAHIM]
Ibrahim, H. A. H., Kender, J. R, and Shaw, D. E., On the application of massively parallel
SIMD tree machines to certain intermediate-level vision tasks, Computer Vision, Graphics,
and Image Processing, Vol. 36, 1986, pp. 53-75.

[Kunc 1]
Kung, H. T., Special-purpose devices for signal and image processing: An opportunity in
VLSI, Technical Report No. CMU-CS-80-132, Department of Computer Science, Carnegie-
Méllon University, Pittsburgh, July 1980.

[KunG 2]
Kung, H. T., and Webb, J. A., Mapping image processing operations onto a linear systolic
machine, Technical Report No. CMU-CS-86-137, Department of Computer Science,
Carnegie-Mellon University, Pittsburgh, March 1986.

[LEeE]
Lee, D.T., and Preparata, F. P.,Computational geometry: A survey, |EEE Transactions on
Computers, Vol. C-33, No. 12, December 1984, pp. 1072-1101.

(L]
Li, Z.-N., and Uhr, L., A pyramidal approach for the recognition of neurons using key
features, Pattern Recognition, Vol. 19, No. 1, 1986, pp. 55-62.

[MEHLHORN]
Mehlhorn, K., Multi-dimensional Searching and Computational Geometry, Springer-Verlag,
Berlin, 1984.

[MiLLER 1]
Miller, R., and Stout, Q. F., Computational Geometry on a mesh-connected computer,
Proceedingsof the 1984 International Conferenceon Parallel Processing, Bellaire, Michigan,
August 1984, pp. 66—-73, IEEE Computer Society, Washington, D.C., 1984.

[MiLLER 2]
Miller, R., and Stout, Q. F., Convexity algorithmsfor pyramid computers, Proceedings of the
1984 International Conference on Parallel Processing, Bellaire, Michigan, August 1984, pp.
177-184, |IEEE Computer Society, Washington, D.C., 1984.

[MiLLER 3]
Miller, R., and Stout, Q. F., Geometric algorithmsfor digitized pictures on a mesh-connected
computer, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-7,
No. 2, March 1985, pp. 216-228.

[MILLER 4]
Miller, R., and Stout, Q. F., Varying diameter and problem size in mesh connected
computers, Proceedings of the 1985 International Conference on Parallel Processing, St.
Charles, Illinois, August 1985, pp. 697-699, IEEE Computer Society, Washington, D.C.,
1985.



Sec. 11.8 References 309

[MILLER 5]
Miller, R, and Stout, Q. F., Mesh computer algorithms for computational geometry,
Technical Report No. 86-18, Department of Computer Science, State University of New
York, Buffalo, N.Y., July 1986.

[NATH]
Nath, D., Maheshwari, S. N., and Bhatt, P. C. P., Parallel agorithms for the convex hull
problem in two dimensions, Technical Report No. EE-8005, Department of Electrica
Engineering, Indian Institute of Technology, Delhi, India, October 1980.

[PREPARATA]
Preparata, F. P., and Shamos, M. |., Computational Geometry, Springer-Verlag, New Y ork,
1985.

[PrRESTON]
Preston, K., and Uhr, L., Multicomputers and Image Processing, Academic, New Y ork, 1982.
[Reeves]
Reeves, A. P., Parallel computer architectures for image processing, Computer Vision,
Graphics, and Image Processing, Vol. 25, 1984, pp. 68-88.

[SANKAR]
Sankar, P. V., and Sharma, C. U., A parallel procedure for the detection of dominant points
on adigital curve, Computer Graphics and I mage Processing, Vol. 7, 1978, pp. 403-412.
[SHiH]
Shih, Z.-C., Chen, G.-H., and Lee, R. C. T., Systalic algorithms to examine dl pairs of
elements, Communications of the ACM, Vol. 30, No. 2, February 1987, pp. 161-167.

[SiEGEL 1]
Siegd, H. J, Siegd, L. J, Kemmerer, F. C., Mueller, P. T. Smalley, H. E., and Smith, S. D,
PASM: A partitionable SIMD/MIMD system for image processingand pattern recognition,
|EEE Transactions on Computers, Vol. C-30, No. 12, December 1981, pp. 934-947.

[SEGEL 2]
Siegd, L. J., Image processing on a partitionable SIMD machine, in Duff, M. J. B, and
Leviddi, S, Eds, Languages and Architectures for Image Processing, Academic, London,
1981, pp. 293-300.

[SEGEL 3]
Siegd, L. J, Segd, H. J, and Feather, A. E., Parallel processing approaches to image
correlation, IEEE Transactions on Computers, Vol. C-31, No. 3, March 1982, pp. 208-218.

[SkLANSKY]
Sklansky, J. Cordella, L. P, and Leviadi, S, Parallel detection of concavitiesin cellular
blobs, IEEE Transactions on Computers, Vol. C-25, No. 2, February 1976, pp. 187-195.

[SNYDER]
Snyder, L., Jamieson, L. H.,Gannon, D. B, and Segd, H. J,, Eds., Algorithmically Specialized
Parallel Computers, Academic, Orlando, Florida, 1985.

[TOUSSAINT]
Toussaint, G. T., Pattern recognition and geometrical complexity, Proceedings of the 5th
International Conferenceon Pattern Recognition, Vol. 2, Miami Beach, Florida, December
1980, pp. 1324-1347, | EEE Computer Society, Washington, D.C., 1980.




12

Traversing Combinatorial
Spaces

12.1 INTRODUCTION

Many combinatorial problems can be solved by generating and searching a special
graph known as a state-space graph. This method, aptly called state-space traversal,
differsfrom the searching algorithms discussed in chapter 5 in that the data structure
searched is not a list but rather a graph. Furthermore, state-space traversal differs
from the graph search techniques of chapter 10in that the graph is generated whileitis
being searched. There are two reasons for not generating a state-space graph in full
and then searching it. First, a state space is typically very large and there may not be
enough memory to store it. Second, assuming we can afford it, generating a full state
space would be wasteful (bothin terms of spaceand time), as only a small subgraph is
usualy needed to obtain a solution to the problem.
There are three types of nodes in a state-space graph:

1 the origin (or start) node(s) representing theinitial conditions of the problem to
be solved;
2 the goal (orfinal) node(s) representing the desired state of the problem; and

3. intermediate nodes representing states of the problem arrived at by applying
some transformation to the origin.

Each edge in the graph is a transition that transforms one state of the problem to
another. A solution to the problem is given by a path from an origin to agoal. The
processes of generating and searching the state-space graph are governed by problem-
dependent rules.

Example 12.1

A set o integers S = {s,, s, ..., $,} IS given along with an integer B. It is required to
determine whether a subset S of S exists such that

Y s;=B.

SieS’
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This problem, known as the subset sum problem, can be solved by traversing a
state-space graph. The origin represents the empty set. Intermediate nodes represent
subsetsof S A goal node representsa subset the sum of whose elements equals B.

For concreteness,let S= {15, 7, 19, 3, 6} and B = 16. The state-spacegraph that is
actually traversed for this instance of the subset sum problem is shown in Fig. 12.1.
Intermediate nodes that cannot possibly lead to a goal node are marked with an x.
There isonly one goal node, marked witha G. [

Our purpose in this chapter is to show how a state space can be traversed in
parallel. We choose one particular problem for illustration, namely, state spaces

X

X

Figure 121 State space for instance of subset sum problem.
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generated and searched by programs that play games with clear rulesand goals, that
is, games d strategy. In particular, we are concerned with games that

1. are played on a board on which pieces are placed and moved;

2. are played by exactly two players;

3. are zero-sum games, in the sense that one player's gain equals the other player's
loss—the outcome for a player is either a win, a loss, or a draw;

4. involve no element of chance;

5 are perfect-information games, in the sense that at any point during the game
each player knows everything there is to know about the current status of both
players and no detail is hidden.

Examples of games satisfying these properties are checkers, chess, and go. Examples o
games that do not satisfy one or more of these properties are backgammon (which
violates the fourth property) and poker (which may violate al properties). In the
remainder of thischapter we usethe term gameto refer to a game of strategy satisfying
these five properties. Most computer programs that play games generate and search
state spaces that have the characteristic of being trees. We shall refer to these as game
trees.

In section 12.2 a brief introduction is provided to a sequential algorithm for
traversing game trees and the associated terminology. The basic principles used in the
design of a parallel implementation of this algorithm are given in section 12.3. The
parallel algorithm itself isdescribed in section 12.4. In section 12.5 various aspects o
the algorithm are analyzed.

12.2 SEQUENTIAL TREE TRAVERSAL
Assume that we want to program a computer to play a game. The computer is given

(i) a representation of the board and pieces;

(i) a description of the initial configuration, that is, the locations of the various
pieces on the board when the game begins;

(iii) a procedure for generating all legal moves from a given position of the game;
(iv) an algorithm for selecting one of the (possibly many) available moves;

(v) a method for making the selected move from the current position, that is, a
method for updating a given board configuration; and

(vi) away of recognizing a winning, losing, or drawing position.

All of these ingredients of a game-playing program are usually straightforward,
with the exception of (iv). It is the move selection algorithm that in general makes the
difference between a program that plays well and onethat plays poorly. For example,
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a program that selectsevery one of its movesat random cannot possibly perform well
in a consistent way. The better game-playing programs utilize sophisticated tech-
niques for choosing their moves. One such technique is based on generating and
searching a game tree, an example of whichisshown in Fig. 12.2. Thefigureillustrates
the game tree generated for the game o tic-tac-toe from some configuration.

In a game tree, nodes correspond to board positions and branches correspond to
moves. The root node represents the board position from which the program (whose
turnitisto play) is required to make a move. A nodeisat ply (or depth) k if it isat a
distance of k branchesfrom the root. A node at ply k, which has branches leaving it
and entering nodes at ply k + 1, is called a nonterminal node; otherwise the node is
terminal. A nonterminal node at ply k isconnected by branchesto its offspring at ply
k + 1 Thus the offspring of the root represent positions reached by moves from the
initial board; offspring of these represent positions reached by the opponent's replies,
offspring of these represent positions reached by replies to the replies, and so on. The
number of branches leaving a nonterminal node is the fan-out of that node.

A complete game tree represents all possible plays of the game. Each path from
the root to a termina node corresponds to a complete game with the root
representing the initial configuration and each terminal node representing an end-
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Figure 122 Game tree for game of tic-tac-toe.
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game configuration, that is,awin for player 1, awin for player 2, or adraw. It hasbeen
estimated that a complete gametree of checkers, for example, contains approximately
10*° nonterminal nodes. Assuming that a program is capable of generating 10° such
nodes per second, it would still require in the vicinity of 10?* centuriesin order to
generate the whole tree. Treesfor chess and go would require even longer times to
generate in full.

The observation made in the previous paragraph is generally true, even starting
from a position other than the initial configuration. A tree whose root represents a
position near the middle of a chessgame, for example, would have approximately 107*
terminal nodes representing dl end-game configurations. Instead, game-playing
programs search an incomplete tree. The depth of such a tree is limited and, in
addition, it is often the case that not al paths are explored. In an incomplete tree,
terminal nodes are those appearing at some predefined ply k or less and do not
necessarily represent positionsfor which the game ends. An evaluation function is used
to assign a score to each of the positions represented by terminal nodes. This scoreis
an estimate of the ""goodness” of the position from the program's viewpoint and is
obtained by computing and then combining a number o parameters. For most board
games, center control and mobility of certain pieces are examples of such parameters.

An algorithm, known as the alpha-beta algorithm, is then used to move these
scores back up the tree. In doing so, the alpha—beta algorithm may also eliminate
some nodes of the game tree without assigning scores to them, as explained in what
follows. When al the offspring of the root have been assigned back-up scores, the
program chooses the move that appears to be best (in light of this incomplete
information).

Once this move is made and the opponent has replied, the program generates
and searches a new tree from the current position to determine its next move. Note
that game trees, like all state spaces, are generated while they are searched, as
mentioned in the beginning of this chapter. A so-called depth-first search is usualy
followed to traverse game trees: It starts by generating a complete path from the root
to the leftmost terminal node; search then resumes from the latest nonterminal node
on the path whose offspring have not al been generated or eliminated by the alpha-
beta algorithm. Search continues (in this left-to-right manner) until all nodes—up to
some depth k— have been either generated or eliminated. It remainsto describe how
the alpha-beta algorithm works.

The Alpha-Beta Algorithm. The alpha-beta algorithm performs a dual
role:

(i) moving scores up the tree from the terminal nodes and, in doing so,
(i) eliminating parts of the tree by determining that they need not be generated.

In backing up scores from terminal nodes, the minimax principle is invoked:

(i) Nodes at even ply (corresponding to positions from which the program is to
select a move) attempt to maximize the program's gain while
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(ii) nodes at odd ply (corresponding to positions from which the program's
opponent is to select a move) attempt to minimize the program's gain.

Initially, every nonterminal node generated is assigned an initial alpha—beta
score o —oo (+ o0) if the node is at even (odd) ply. As mentioned earlier, every
terminal node generated is assigned a static score obtained from an evauation
function. A temporary apha—beta score is assigned to a nonterminal node while its
offspringare being explored. If the nodeisat even (odd) ply, then its temporary score
isequal to the maximum (minimum)of the final scores that have so far been assigned
to its offgpring. Final scores are defined as follows:

1 A static score assigned to a terminal node is fina and

2 the final score of a nonterminal node is the score it receives when each o its
offspring has either been assigned a fina score or been eliminated (asexplained
in the following).

The processof backing up scores from terminal nodesisillustrated in Fig. 12.3. The
figure showsthe portion o a gametree that has already been generated. Square and

PLY 0 16

PLY 1 2

PLY 2 3 6

PLY 3 4 8

PLY4 g | 7 6| 5 71 6 9| 6 0] 9

Figure 123 Backing up scoresfrom terminal nodes.
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circlenodes represent positionsfrom which the first and second playersare to make a
move, respectively. The number beside each node indicates the order in which the
node was generated by the algorithm. Also shown inside the nodes are temporary and
final scores. Static scores are obtained using some evaluation function. Assumingthat
the nodes at plies 1, 2, and 3 have no further offspring, al scores at plies1, 2, 3, and 4
are final. The score associated with the nonterminal node at ply 0 is temporary,
assuming that further offspring of this node need to be generated and assigned fina
scores.

The scores are stored in a score table: Entry i of this table holds the score for a
node under consideration at ply i. Figure 12.4illustratesthe contents of the score table
asthe tree in Fig. 12.3 is being traversed.

By its nature, the alpha—beta algorithm makes it unnecessary to obtain scores
for al nodesin the game treein order to assign a final score to the root. In fact, whole
subtrees can be removed from further consideration by means of so-called cutoffs. To
illustrate this point, consider the two portions of game trees shown in Fig. 12.5. In
both trees some of the nodes have received a final score (and are labeled with that
score), whereas the remaining nodes (labeled with a letter).are till waiting for a final
score to be assigned to them. From the preceding discussion, thefinal score o the root
nodein Fig. 12.5(a) is obtained from

u =max{5,v), wherev=min{4,...}.

Clearly u = 5regardless of the valuedf v. It followsthat the remaining offspringof the

ENTRY 0 = — -
ENTRY 1 teo +oo +oo
ENTRY 2 - —o —
ENTRY 3 teo 7 5
ENTRY 4 —° 7 5
(a) INITIALLY (b) AFTER NODE 5 (c) AFTER NODE 6
IS SCORED IS SCORED
—oo —oo 6
+oo +oo 6
5 5 6
5 6 6
6 6 9

(d) AFTER NODE 7

IS SCORED

(e) AFTER NODE 9

IS SCORED

(f) AEFTER NODE 10

IS SCORED

Figure124 Contents d score table while tree in Fig. 12.3 is traversed.
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(a) ®
Figure 125 Cutoffscreated by alpha-betaalgorithm.

node labeled v need not be explored any further. We say that a shallow cutoff has
occurred. A similar reasoning applies to the tree in Fig. 12.5(b), where the value of u
can be obtained regardless of theexact value of y. Againit follows that the remaining
offspring of the node labeled y can be ignored: This is called a deep cutoff

When afinal scoreiseventually assigned to the root, the search terminates. By
definition, the score was backed up during the search from one of the root's offspring
to theroot. Thusthe branch leading from the root to that offspring correspondsto the
move chosen by the alpha-beta algorithm. Note that, upon termination o the
traversal, the algorithm in fact determines the principal continuation, that is, the best
sequence of moves found for both players to follow based on searching a tree of
limited depth.

The preceding concepts constitute the foundation upon which our paralel
algorithm is constructed. In the following section we show how an interesting
property of the sequential alpha—beta algorithm is used profitably in the parallel
version.

12.3 BASIC DESIGN PRINCIPLES

In this section we describe the main ideas behind

(i) the parallel algorithm,
(ii) the model of computation to be used,
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(iii) the objectives motivating the design, and
(iv) the methods adopted to achieve these objectives.

12.3.1 The Minimal Alpha-Beta Tree

A game treeissaid to be uniformif al of its nonterminal nodes have the same number
of offspringand al of its terminal nodes are at the same distance from the root. Since
the number of offspringisequal for all nonterminal nodes, it is referred to as the fan-
out of the tree. Similarly, the distance of terminal nodes to the root iscalled the depth of
the tree. The uniform tree of Fig. 12.6, for example, hasafan-out of 3 and a depth of 2

A game tree is perfectly ordered if the best move for each player from any
position isaways provided by the leftmost branch leaving the node representing that
position. In such a tree it is guaranteed that only a subset of the nodes needs to be
generated in order to determinethe principal continuation. Consider, for example, the
uniform treein Fig. 12.7, which hasa fan-out f equal to 3 and a depth d also equal to 3.

In this tree, the terminal nodes shown with a score (and only these termina
nodes) must be examined by the al pha—beta algorithm to reach a decision about the
best move for the player at the root. The tree shown in bold lines and called the
minimal tree is the one actually generated by the algorithm. The remaining nodes
and branches (drawn with thin lines) are cut doff (i.e., they are not generated). Note that
for this tree

(i) the scores shown for nonterminal nodes are final and

(i) the principal continuationisgiven by the sequence of branchesleading from the
root to the terminal node labeled 30.

Figure 126 Uniform tree.
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Figure 127 Perfectly ordered game trea.

In genera, for a perfectly ordered uniform tree, the number o terminal nodes
gecerated and assigned a score by the alpha—beta algorithm is equal to

M(f, d) = 142 4 i _ 1,

Thus M(/, d) representsa lower bound on the number of nodes scored by the alpha—
beta algorithm for a uniform tree that is not necessarily perfectly ordered. This fact
represents the basis of our parallel implementation of the alpha—beta agorithm:
Assuming that thetreeto betraversedis perfectly ordered, those nodesthat haveto be
scored are vidted first in parallel. Once dl cutoffshave taken place, the remaining
subtrees are again searched in parald.

12.3.2 Model of Computation

The algorithm isdesigned to run on an EREW SM MIM D computer with a number
of processors operating asynchronously. A processor can initiate another processor,
send a message to another processor, or wait for a message from another processor.
Apart from these interactions, al of which take place through shared memory,
processors proceed independently. As usual, the MIMD algorithm is viewed as a
collection of processes. A process is created for each node generated. Its job is to
traversethetree rooted at that node. The number of processorsisindependent o the
number of processes.
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12.3.3 Objectives and Methods
The algorithm is designed with two objectivesin mind:

1. to minimize the running time of the search and

2. to perform as many cutoffsas possible, thereby minimizing the cost of the search
(total number of operations).

In order to achieve these goals, a distinction is made among the offspringd a node.
Theleftmost offspring of a nodeis called the Ieft offspring. The subtree containing the
left offspringiscalled the I€ft subtree, and the processthat traverses this subtree is the
left process. All other offspringdf a node are called right offspring and are contained in
right subtrees that are searched by right processes. Thisisillustrated in Fig. 12.8, where
L and R indicate left and right offspring, respectively. Note that the root is labeled
with an L.
A high-level description o the algorithm consists of two stages.

Stage I: The treeis traversed recursively by

(i) traversing recursively the left subtree of the root and
(ii) traversing the left subtree only of each right offspring of the root.

This stage assigns

(i) afinal score to every left offspring and
(i) atemporary scoretoevery right offspring(whichisthefina score of itsleft
offspring).

Stage 2: If the temporary score of a node cannot create a cutoff, then the right
subtrees of this node are traversed one at a time until they all have been either
visited or cut off.

The preceding description is now refined by explaining the mechanism o
process creation. We mentioned earlier that a process is associated with every node
generated. The tree traversal and process creation proceed as follows. The process
associated with a node z spawns a left process to traverse the left subtree of z. This
process is associated with the left offspring of z. In turn it spawns left and right
processes to search all of the left offspring's subtrees. This continues until a final score
is assigned to the left offspring of z and backed up, as a temporary score, to z
Concurrently to the traversal of theleft subtree of z, atemporary valueisobtained for
each of the right offspring of z. These scores are then compared to the final score of the
left offspring and cutoffs are made where appropriate.

The temporary score for a right offspringw is obtained as follows. The process
associated with w spawns a process to traverse its left subtree. This new process
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Figure 128 Distinction between left and right offspring of node.
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Figure 129 Process creation during tree traversal.

traversesthe subtree, backs up a scoreto w, and terminates. If after a cutoff check

the

traversal of the right subtree rooted at w is to continue, then a processis generated to
traversethe next subtree of w. Thisprocedurecontinuesuntil either thesubtree rooted

at w is exhaustively traversed or the search is cut off.

Theforegoing descriptionisillustrated in Fig. 12.9. Here the process associated
with the root generates processes 1, 2, and 3. Process 1 being a left process generates
processesl.1, 1.2, and 1.3 to traverseall of thesubtrees of the left offspring of the root.
Processes 2 and 3are right processesand thereforegenerate only processesto search

the left subtrees d the right offspring d the root, namely, processes 2.1 and

31,

respectively. Thisconcludes stage 1. Only if necessary, (one or both) processes 2.2 and
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3.2 followed by (oneor both) processes 2.3 and 3.3 are created in stage 2. Note that
after generating other processes, a process suspends itself and waits for these to back
up a vaue.

It isclear that by applying this method those nodes that must be examined by
the alpha-beta algorithm will be visited first. This ensures that needless work is not
donein stage 1 of the algorithm. Also, a cutoff check is performed before processesare
generated in stage 2 to search subtrees that may be cut off.

As mentioned earlier, game trees are typically very large, and it is reasonable to
assume that there will be more processes created than there are processors available
on the MIM D computer. However, let us assumefor the sake of argument that there
are more processors than processes. It may be possible in this case to reduce the
running time of the tree traversal by generating processesto traverse the subtrees of a
right offspring in parallel using the idle processors. This brute-force approach is not
used sinceit conflicts with the other aim of our design, namely, minimizing the cost of
the search. The cost of any tree traversal consists mainly in the cost of updating the
board in moving from parent to offspringand in the cost of assigning a temporary or
final value to a node. Therefore, even though our agorithm may leave some
processors idle in this hypothetical situation, the overal cost in operations is
minimized by not traversing subtrees that may not have to be traversed.

Process Priority. Weconclude this section by describing how processesare
assigned priorities when deciding which is to be executed by an available processor.
Asalready explained, left subtrees are searched exhaustively by the parallel algorithm,
whileinitially only a single temporary value is obtained from each right subtree. In
order to accomplish this, left processes should be given higher priority than right
processes. Also, since scores must be obtained from terminal nodes, processes
associated with the deepest nodes in the tree should be given preference. Any formula

44

14 24 34

11 12 13 21 22 23 31 32 33

Figure 1210 Assigning prioritiesto processes.
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for labeling nodesthat assignsall offspringa higher priority than their parent and left
offspring a higher priority than their right siblingscan be used. A processthen adopts
the priority of the node with which it isassociated. One example of such aformulafor
uniformtreesfollows. It assignsa priority to a newly generated node as a function of
the priority o its parent:
priority(offspring) = priority(parent) — (f + 1 — i) x 10%d-py~ D,
where
f =fan-out o the tree,

d = depth of the tree,
i = offgpring's position among its siblingsin a left-to-right order, 1 <i < f,
ply = ply of parent,
and aiissuch that 10°~! <f < 10% The priority o the root is given by
d
priority(root) = Y (f + 1) x 10%4~9,
=t

Note that the smaller the integer returned by this formula, the higher the priority. An
example of this priority assignment is shown in Fig. 12.10.

12.4 THE ALGORITHM

This section providesa formal description o the parallel alpha—beta algorithm as
implemented on an EREW SM MIM D computer. We begin by defining three aspects
of the implementation.

12.4.1 Procedures and Processes

An MIMD algorithm is a collection of procedures and processes. Syntacticaly, a
processis the same as a procedure. Furthermore, both a procedureand a processcan
call other procedures and create other processes. Where the two differ is in the
semantics. In the paradlel apha-beta algorithm, we shal distinguish between
processes and proceduresin the following way:

(i) When a procedureiscalled, control istransferred from the calling context to the
procedure.

(i) When a process is invoked, it is initiated to run asynchronously, and the
invoking context continues execution.

12.4.2 Semaphores

Semaphores are used by the algorithm for process communication and syn-
chronization. Here a semaphoreconsistsdf an integer value and a queueof processes.
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When a semaphore is declared, it is initialized to have a value 0 and a null queue.
There are two operations allowed on semaphores, denoted by U and V.

1. Operation U examines the integer value:

(i) If itisgreater than zero, it decrementsit by 1, and the processdoing the U
operation proceeds.

(i) If the valueis zero, the process doing the U operation suspends itself and
enters the queue.

2 Operation V examines the queue:
(i) If it is nonempty, it lets the first waiting process continue.
(i) If no processes are waiting, the integer value is incremented by 1.
Both U and V are indivisible operations.

12.4.3 Score Tables

In the paralel apha-beta algorithm, many parts of the tree are traversed simulta-
neously. Therefore, a singleglobal score table cannot be used asin the sequentia case.
Instead, an individual score tableisassigned to each node when a processis generated
to search the subtree rooted at that node. This tableisinitialized to the valuesin the
score table of the node's parent.

We are now ready to state the parallel alpha-betaalgorithm. The algorithm is
given in what follows as procedure MIMD ALPHA BETA together with the
procedures and processesit uses. Some of the procedures are entirely game dependent
and therefore are not fully specified.

procedure MIMD ALPHA BETA (Board, Depth, Principal Continuation)

{This procedure uses three variables
Board: a description of the board configuration from which a move is to be made,
Depth: the depth to which the tree is to be traversed,
Root Table: the root's score table;
and three semaphores
RootTableFree, RootHandled, and LeftOffspringDone.}

Step 1: (1.1) Read Board and Depth
(1.2) Initialize RootTable
(1.3) V(RootTableFree).

Step 2 (Create a process to begin the search)
HANDLE (Board, true, true, false, 0, RootTable, RootHandled,
L eftOffspringDone).

Step 3. {Has the root been assigned a final score?)
U (RootHandled).

Step 4:  Output the Principal Continuation. [J
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process HANDLE (Board, MyTurn, Left, ParentLeft, Py, ParentTable, Done,
L eftSiblingDone)

{This process uses the following variables
MyTurn: trueif ply is even, false otherwise,
Left: true if the processis a left process, false otherwise,
ParentLeft: true if the parent processis a left process, false otherwise,
Ply: the ply number,
ParentTable: the parent's score table,
MyTable: the score table created automatically when this process was invoked, and
initialized to the parent's core table;
and three semaphores
Done, LeftSiblingDone, and MyTableFree.}

Step 1. {If thisisa terminal node, score it; otherwise, generate its offspring}
(1.1) v(MyTableFree)
(1.2) if Ply = Depth
then SCORE (Board, MyTable)
else GENERATE (Board)
end if.

Step 2 {Update parent's score table}
UPDATE (ParentTable).

Step 3. if Left and ParentLeft
then V (LeftSiblingDone)
end if.

Step 4 V(Done). O

procedure SCORE (Board, Table)

{This procedure evaluates the given board configuration (Board) associated with a
terminal node and puts the resulting static scorein the given scoretable (Table). The
evaluation function is game dependent and is left unspecified.) [

procedure GENERATE (Board)

{This procedure searches a subtree rooted at a nonterminal node. It calls procedure
GENERATE MOVES to produce a list of moves from the current position. The
moves are stored in an array Moves whose ith location is denoted Moves[i]. The
number of moves is kept in the variable NumberMoves. OffspringDone and
LeftOffspringDone are semaphores. Procedure APPLY isthen used to apply each of
the generated movesto the given Board thereby producing board configurationsfor
its offspring. Variable NewBoard is used to store each new configuration. The
variable Cutoff is assigned the value trueif a cutoff is to occur, false otherwise}

Stepl: GENERATE MOVES (Board, Moves, NumberMoves).

Step 2 {If the root of the subtree to be searched is a left node, then process
HANDLE isinvoked oncefor each offspring. The processesthus created
run concurrently and procedure GENERATE waits until they all
terminate}
if Left
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then (2.1) for I = 1 to NurnberMovesdo
(i) APPLY (Board, Moves[!], NewBoard)
(i) HANDLE (NewBoard, not MyTurn, 1= 1, Left, Ply +1 MyTable,
OffspringDone, LeftOffspringDone)
end for
(2.2) for I = 1 to NurnberMoves do
U (OffspringDone)
end for
{If the root of the subtree to be searched is a right node, then its offspring are
searched in sequence by calling process HANDL E for one of them, waiting for it
to complete, and performing a cutoff check before handling the next offspring)
else(2.3) Cutoff « false
(24) 11
(2.5) while (! £ NurnberMovesand nat Cutoff) do
(i) APPLY (Board, Moves[!], NewBoard)
(i) HANDLE (NewBoard, not MyTurn, 1= 1, Left, Ply +1, MyTable,
OffspringDone, LeftOffspringDone)
(iii) U (OffspringDone)
(iv) { Has the leftmost sibling received a final score?}
U (LeftSiblingDone)
(V) V(LeftSiblingDone)
(vi) if (Ply is odd) and (offspring's score < parent's score)
then Cutoff « true
eseif (Ply is even) and (offspring's score > parent's score)
then Cutoff « true
end if
end if
(vii) lel+1
end while
endif.

procedure UPDATE (ParentTable)

{This procedure waits until the parent's score tableisfree. Then, if the scorecalculatedfor the
current node improves on the parent's score, it is copied into the parent's score table. The
semaphore ParentTableFree is used. This semaphore is created and initialized simulta-
neously with variable ParentTable.)

Step 1. U (ParentTableFree).
Step 2 Copy vaueif applicable.
Step3  V(ParentTableFree). [

procedure GENERATE MOVES (Board, Moves, NurnberMoves)

(This procedure produces al the lega moves from a position given by variable
Board, stores them in array Moves, and sets variable NumberMoves to ther
number. The procedure is game dependent and is thereforeleft unspecified} [
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procedure APPLY (Board, Moves NewBoard)
{This procedure changes the current position given by variable Board by making
the move recaved in varigble Moves The reault is a nev board configuration
NewBoard. The procedureis game dependent and is thereforeleft ungpecified) 0O

12.5 ANALYSIS AND EXAMPLES

Asit isthe case with most M 1M D algorithms, the running timeof procedure MIMD
ALPHA BETA is best analyzed empirically. In this section we examine two other
aspects of the procedure's performance.

1 Oned the design objectives stated in section 12.3.3 isto increasethe number of
cutoffsas much as possible. How does the parallel implementation perform in
this respect compared with the sequential version?

2 What amount of shared memory is needed by the algorithm?

In answering these two questions, we also present some examplesthat illustrate the
behavior of procedure MIMD ALPHA BETA.

12.5.1 Parallel Cutoffs

In order to answer thefirst question, we shall invoke the distinction made in section
12.2 between shallow and deep cutoffs. In the following discussion we use ' sequentia
search” and "parallel search™ to refer to the sequential alpha—beta agorithm and
procedure MIMD ALPHA BETA, respectively.

Shallow Cutoffs

1 All shallow cutoffs that would occur in a sequential search due to the
(temporary) score backed up to a node from its left offspring are also caused by
procedure MIMD ALPHA BETA. Thisis becauseall (temporary) scores obtained for
the right offspring of the node are compared to the score backed up from its left
offspring for a cutoff check before the right subtree traversal continues. An example
illustrating this situation is shown in Fig. 12.11. During stage 1 o the parallel
algorithm,

(i) the left subtree of the root is searched exhaustively resulting in the root being
assigned (temporarily) the final score of its left offspring (i.e., 8) and

(if) thetwo right subtrees are partially searched resultingin temporary scoresof 3
and 5 being assigned to the first and second right offspring of the root,

respectively.
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8 MAXIMIZING

MINIMIZING

Figure 1211 Shalow cutoff detected by both sequential search and procedure
MIMD ALPHA BETA.

At the beginning of stage 2 it is determined that the circled sections of the two right
subtrees are cut off in exactly the same way as in sequential traversal.

A right subtree that is exhaustively searched during stage 2 without cutoff
comparesits final score to the temporary score of the parent and changesthe parent's
score if necessary. Consequently, any cutoff that would have occurred in other right
subtrees due to the score originally backed up to the parent from its left offspring will
also occur with the new score backed up to the parent from a right offspring.

2 Some shallow cutoffs that would occur in a sequential search can be missed
by procedure MIMD ALPHA BETA due to the way in which processes are
generated. In the example of Fig. 12.12, a sequential search would cut off the circled
portion of the tree. Parallel search missesthe cutoff since a processis created to search
that subtree before the right subtree of the root completes its search and updates the
root's score to 7.

3. Some cutoffs that are missed in a sequential search may occur in procedure
MIMD ALPHA BETA due to the way in which processes are generated. A right
subtree search that terminates early and causes a change in the parent's score may
cause cutoffsin other right subtrees that would not occur in a sequential search. This
situation isillustrated in Fig. 12.13, where both right offspring of the root compare
their initial scores of 6 and 7, respectively,to thefinal score o theleft offspring, that is,
5. Neither right subtree search is cut off, so processes are generated to continue that
search. But since the second right offspring of the root has no further offspringof its
own to be examined, its score of 7 isfinal, and because 7 > 5, that scoreis backed up
to the root. Now, when the terminal node labeled 8 has been scored and the processat
thefirst right offspring of theroot performs a cutoff check before proceeding, thistime
a cutoff occurs. The portion of the tree that iscut off isshown circledin Fig. 12.13; this
portion is not cut off during a sequential search.
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5 MAXIMIZING

5 7 6 MINIMIZING

Figure 1212  Shallow cutoff missed by procedure MIMD ALPHA BETA.

Figure 1213 Shallow cutoff missed in
sequential search and discovered by pro-
cedure MIMD ALPHA BETA.

Deep Cutoffs. In order for deep cutoffs to occur at a node, scores from
searchesdf other parts of the tree must be available. In a sequential search the scores
at each ply are known to every node and are stored in a single global score table. In
procedure MIMD ALPHA BETA thisisimpossible, as stated in the previoussection.
We now show briefly why thisisthe case. Assumethat a single global score table was
used. In Fig. 12.14(a) nodes 1 and 2 are scored simultaneously. Suppose that node 2
receivesits scorefirst, as shownin Fig. 12.14(c). This meansthat the right offspring of
the root is backed up the score 9 at ply 1 and then the left offspring is backed up the
score 6 (overwritingthe scoretable vaueaof 9 at ply 1). Now when node 3is scored, the
value8 will not berecorded in thetableat ply 1 (snce8 > 6 and we are minimizing at
ply 1). Therefore, the value of 8 will not be backed up to theroot asit would bein the
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PLY O
my m,
PLY 1
ma m4 m5
PLY 2 6 9 8
1 2 3
@
PLY O —co —oo 6 6
PLY 1 +oo 9 6 6
PLY 2 —o0 9 6 8
(b) INITIALLY (c) AFTER NODE (d) AFTER NODE (e) AFTER NODE
2 IS SCORED 1 IS SCORED 3 IS SCORED

Figure1214 Using singlescore tablein parallel search leads to incorrect results.

sequential search. As a result, the best sequence of moves from the root, namely,
(m, m),isnot returned; instead( m ,m) is returned.

Weconclude from the discussion that having a singlescore tableisimpossiblein
paralle search as it would lead to incorrect results. The alternative adopted by
procedure MIMD ALPHA BETA is to assign to each node created its own score
table; this, however, meansthat the information necessary for adeep cutoff to occur is
not available in general, as shown in the following example.

Example 12.2

Figure 12.15illustrates a deep cutoff occurring in asequential search: Thecircled portion
iscut off due to thescore of the root's Ieft subtree being availablein thescore table, while
the root's right subtree is searched.

This deep cutoff cannot occur in procedure MIMD ALPHA BETA, asshown in
Fig. 12.16: Each node of the right subtree has a score tableinitializedto the score tabl e of
its parent and not containing the score of the root's left offspring.

O



Sec. 12.5 Analysis and Examples 3

8
8 PLY 0 8 8
PLY 1 8 8
PLY 2 8 8
PLY 3 8 8
8
PLY 4 8 0
(b) INITIALLY (c) AFTER NODE  (d) AFTER NODE
1 1S SCORED 2 IS SCORED
8
8 0
1 2

Figure 1215 Deep cutoff in sequential search.

12.5.2 Storage Requirements

This section presents an analysis o the storage requirements of procedure MIMD
ALPHA BETA. We begin by deriving an upper bound on the amount o storage
needed by the procedure under the assumption that an infinite number of processors
isavailable. A more redlistic estimate of the storage requirementsis then derived by
fixing the number of processorsused during the search.

Unlimited Processors. Recdl that the procedure makes a crucia dist-
inction between the leftmost offspring of a node and the remaining offspring of that
node. During stage 1, knowledge about the behavior of the sequential versionis used
to exploresevera pathsin parallel. During each iteration of stage 2, severd subtrees
are searched in paralel, each subtree, however, being searched sequentialy. Thisis
illustrated in Figs. 12.17 and 12.18.

In Fig. 12.17 a uniform tree is shown whose depth and fan-out are both equal to
3 The pathsexplored in parallel during stage 1 areindicated by bold lines. Calling the
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Figure 1217 Subtrees traversed during stage 1 and first iteration of stage 2.

Figure 12.18 Subtrees traversed during second iteration of stage 2.

333
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root a left node, it isclear that left offspring and their right offspring are given priority
by the procedure. Nodes explored during stage 1 will therefore be known as primary
nodes, that is, nodes at which a process is created during stage 1 to do the search.
Formally:

1 Theroot is a primary left offspring,

2 aprimary left offspring at ply k is the left offspring of a primary (left or right)
offspring at ply k— 1, and

3 aprimary right offspringat ply k isa right offspring of a primary left offspringat
ply k — 1

Following stage 1, the temporary score backed up at node 1 is compared with
the onesat nodes 2 and 3; if theformer issmaller, then the unexplored portions of the
subtrees rooted at 2 and 3 need not be considered at all. Otherwise, one or both o
these two portions, shown circled in Fig. 12.17, are searched simultaneously (each
sequentially) during thefirst iteration of stage 2.

When the subtrees rooted at nodes 2 and 3 have been fully searched, the fina
score backed up at node 1 iscompared with the temporary scoresat nodes 4 and 5for
a cutoff. If the former is larger, the cutoff check is successful and the unexplored
subtrees of 4 and 5 need not be considered. Otherwise, one or both of the subtrees
shown circledin Fig. 12.18 are searched simultaneously (each sequentially) during the
second iteration of stage 2, and so on.

To study the storage requirements o the procedure, we note that for every node
being explored during the search at least one storage location is needed to hold the
temporary score of that node. When an explored node is discarded from further
consideration, its storage locations are reallocated to another unexplored node that
the procedure decides to examine. Therefore, in order to determine how much storage
is needed, it is necessary to derive the maximum number of nodes simultaneously
explored at any time during the search. This number is precisely the number o
primary nodes (during stage 1 where the maximum degree of parallelism occurs).

Toseethis, notethat any tree searched sequentially during stage 2 is rooted at a
node that was primary, that is, explored during stage 1. This subtree isisomorphic to
theleftmost subtree rooted at the same primary node. The leftmost subtree has at least
as many primary nodes as a subtree searched in stage 2. Therefore, the number of
nodes searched in parallel during stage 2 cannot exceed the number of primary nodes.

This latter number is now derived (keeping in mind that an infinite number of
processors isavailable and therefore no bound existson the number of processesto be
created). Let

L(k) = number of primary left offspring at ply k
and

R(k) = number of primary right offspring at ply k.
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In Fig. 12.16, L(3) = 5and R(3)= 6. From our definition of primary nodesit follows

that for a uniform tree with fan-out f we have
Lky=Lk-1)*TRKk-1, k>
R(k) = Lk — 1) x (f = 1), k>
L0)=1 and R(0)=0.

For a uniform tree of depth d, the total number of primary nodesistherefore given by

1
1

S = k;) [L(k) + R(k)],

and the storage requirements o the algorithm are clearly o O(S).
Solving the preceding recurrence, we get

;(__z_kﬁ [(1 + x)k+1 _ (1 _ x)k+1]

Lk) =

and

R(k) = [A+xf -1 —xf]x(f—1)

x x 2k
where
x=[114(f - n]*2

Limited Processors. It is aready clear that our assumption about the
availability d an unlimited number o processors can how be somewhat relaxed.
Indeed, the maximum number o processors the algorithm will ever need to search a
uniform tree of depth d will be

P(f, d) = L(d) + R(d).

In Fig. 1216, P(/, d) = 11. Even though P(f, d) establishes an upper bound on the
number of processorsthat will ever be needed by the algorithm to search a uniform
treg, it is till a very large number of order f%2, as one should have expected. In
practice, however, only a smal number o processorsis availableand we are led to
reconsider our definition of primary nodes. The actual number of primary nodesisin
fact determined by the number of processors available. If N processors are used to
search a uniform tree d fan-out f, then the actual number o primary nodesat level k
isequal to

min{L(k) + R(k), N},
and the total number o primary nodesfor a tree of depth dis given by the function

S(N) = f min{L(k) T R(k), N}.

k=0
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Under these conditions the storage requirements of the algorithm are clearly of
O(s(N)). Note that S = s(P(f,d)),and that for N < f'we have

s(N) =1+ Nd.
12.6 PROBLEMS

121 The state-space graph in Fig. 12.1 contains twenty-three nodes. Graphs for other values
of B may contain more or less nodes. In the worst case, 2 nodes may have to be
generated to solve the subset sum problem, where n is the number of elementsd S. A
sequential algorithm for traversing such a state-space graph requires exponential timein
nin the worst case. Derive a parallel algorithm for the subset sum problem. What is the
running time of your algorithm?

122 Prove the equality

M(f, d) = fid/ﬂ + fldlll -1

of section 12.3.1.

123 Discuss the following straightforward approach to implementing the alpha-beta
algorithmin parallel: A processis created for each offspring of the root whose purpose is
to search that offspring's subtree using the alpha-beta agorithm. If enough processors
are available, then al processesare carried out simultaneously.

124 In procedure MIMD ALPHA BETA, an individual score table is assigned to each node
when a process is generated to search the subtree containing that node. This table is
initialized to the valuesin thescore table of the node's parent. Asaresult, the information
necessary for a deep cutoff to occur is not available in general. In practice, however, a
node is not given a complete score table but rather just a small table containing the
scores for the two previous plies and the node itself. This means that the compl ete score
tablefor a nodeisactualy distributed throughout the tree along the path from the root
to the node. With this structure it would be possible to obtain deep cutoffs as follows.
Suppose that during a search of the treein Fig. 12.16 the following sequence occurs:
(@) thesearch of the left subtree of the root begins,

(b) the search of the right subtree begins, and

(c) thesearch of the left subtree completes, backing up a temporary score to the root.
At this point searching along some paths in the right subtree could be cut off, the
information indicating this being available in the score table of the root node. However,
in order to effect this deep cutoff, the information must be propagated down the right
subtree. Extend procedure MIMD ALPHA BETA to deal with this circumstance.

125 The apha-beta algorithm owes its name to the fact that at any point during the tree
search the fina value o the root lies between two values that are continually updated.
These two values are arbitrarily caled alpha and beta. Consequently, the problem of
finding the principal continuation can be viewed as the problem of locating theroot of a
monotonic function over some interval. This leads to the following alternative parallel
implementation of the alpha-beta algorithm. The interval (— co, + o) isdividedinto a
number of digjoint subintervals. A processis created for each subinterval whose purpose
is to search the game tree for the solution over its associated subinterval. If enough
processors are available, then each processcan be assigned to a processor, and hence all
processes can be carried out independently and in paralel. Describe this algorithm
formally.
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126 Discussthe merits of each of the following approaches to speed up game tree search:
(i) Computing the terminal node evaluation function in parallel.
(i) Storing the scores of some terminal nodesin a special hash table to avoid having to
recompute them should these positions reoccur.
(iii) Storing movesthat created cutoffsin a special table: If any of thesemovesoccursat a
later stage of the game, it isgiven priority by the search algorithm over other moves
from the same node.

127 Can you think o other models of paralel computation, besides the SM MIMD
computer, that can be used profitably to implement the alpha-beta algorithm in
parallel? For example, how can a tree of processors be used to search a game tree?

128 Assumethat asequentia algorithm can traversea gametree up to adepth d. Arguefor or
against each of the following statements:

(i) A pardlel algorithm allows that tree to be traversed in a shorter amount of time.
(i) A parallel agorithm allowsa tree of depth larger than d to be traversed in the same
amount of time.

129 The subset sum problem of example 12.1 is a representative of the class of decision
problems, where it is required to determine whether a solution satisfying a number of
constraints exists. Another exampleis the traveling salesman problem of problem 10.50.
Decision problems can sometimes be turned into optimization problems. The optimiza-
tion version of the traveling salesman problem calls for finding the Hamilton cycle of
smallest weight in a given weighted graph. Propose a parallel algorithm for solving this
problem based on the branch-and-bound approach (problem 1.13).

1210 Suggest other problems that can be solved through state-space traversal and design
paralel agorithms for their solution.

12.7 BIBLIOGRAPHICAL REMARKS

State-space traversal has been used to solvedecision and optimization problems. Both kinds of
problems arisein a branch of computer science known as artificial intelligence (Al). Thisis a
field of study concerned with programming computers to perform tasks normally requiring
human "intelligence." Since our understanding of the essencedf intelligenceis at best vague, AI
islargely defined by the kind of problems researchersand practitioners in that field choose to
work on. Examplesof such problemsinclude making computers understand natural languages,
prove mathematical theorems, play games of strategy, solve puzzles, and learn from previous
experience ([Shapiro]). Parallel algorithms for AI problems are described in [Deering],
[Feldman], [Fennell], [Forgy], [Miura], [Reddy], [Rumelhart], [Stanfill], [Uhr], [Ullman],
and [Wah 1].

Programming computers to play gameswasone of theearliest areasof Al. Asitdidin the
past, this activity continues today to attract researchersfor a number of reasons. The first and
most obvious of theseisthat the ability to play complex gamesappearsto be the provinced the
human intellect. It is therefore challenging to write programs that match or surpass the skills
humans have in planning, reasoning, and choosing among several options in order to reach
their goal. Another motivation for this research is that the techniques developed while
programming computersto play games may be used to solve other complex problemsin real
life, for which gamesserveas models. Finally, games provide researchersin Al in particular and
computer scientistsin general witha mediumfor testing their theorieson varioustopicsranging
from knowledgerepresentation and the processaf learning to searching algorithms and parallel
processing. Procedure MIM D ALPHA BETA isfrom [Akl 17. A number of parallel algorithms
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for traversing game trees, along with their empirical analyses, are described in [Akl 1], [Akl 2],
[Baudet], [Finkel 1], [Finkel 2], [Fishburn], [Marsland 1], [Marsland 2], and [Stockman)].

Various parallel implementations of the branch-and-bound approach to solving optimi-
zation problems and analyses of the properties of these implementations can be found in
[Imai], [Kindervater], [Kumar], [Lai], [Li 17, [Li 2], [Li 3], [Mohan], [Quinn], [Wah 2],
[Wah 3], and [Wah 4].
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Decision and Optimization

13.1 INTRODUCTION

In the previous chapter we saw how state-space traversal techniques can be used to
solvevariousdecision and optimization problems. Recall that a decision problem asks
whether a solution satisfying some constraints exists. Also, given an objective
function, an optimization problem calls for finding an optimal solution, that is, one
that maximizesor minimizesthe objective function. Our purposein this chapter isto
present other ways to approach such problems. For illustration we use the problems
o job sequencing with deadlines and the knapsack problem. Our parallel solutionsto
these problems rely on the ability to efficiently sort a sequence and compute its prefix
sums. The first of these operations was covered in detail in chapter 4. We devote a
large part of this chapter to a thorough study of the second operation first
encountered in chapter 2

In section 13.2 it is shown how a number of different models can be used to
compute the prefix sums of a sequence. A decision problem (job sequencing with
deadlines) and an optimization problem (the knapsack problem) are addressed in
section 13.3.

13.2 COMPUTING PREFIX SUMS

A sequence of n numbers X = {xg, X,,...,X%,_1}, Wheren = 1, is given. We assume
throughout this chapter that nisa power of 2;in caseit is not, then the sequence can
be padded with elements equal to zero in order to bring its size to a power of 2
It is required to compute al n initidl sums S={sg, S1,...,8,—1}, Where
s;=xo T x, -+ x,fori=01,...,n— 1 These sums are often referred to as
the prefix sums of X. Indeed, if the elements of X are thought of as forming a
string w = x4x, ... x,_1, then each s, is the sum of those elementsforming a prefix of
length i.

31
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Sequentially, the n prefix sums can be computed in O(n) time by the following
procedure.

procedure SEQUENTIAL SUMS (X, S)
Stept: sg « xo.
Step2 fori=1ton—1do

S; = Si-1 +xi

end for. O

This running time is optimal since Q(n) steps are needed simply to read the input,
By contrast, when several processors are available, each capable of performing

the addition operation, it is possible to obtain the sequence S = {so,5;,...,8,—}

significantly faster. Procedure PARALLEL SUMS shows how thisis done.

procedure PARALLEL SUMS (X, 9
Stepl fori=0ton — 1doin parale

S; — X;
end for.

Step2 for j=0to(logn)—1do
fori=2/ton —1doin paralld
Si e Si-24 +si
end for
end for. [0

This procedure uses a scheme known as recursive doubling. In chapter 2 we saw how
this scheme can be implemented on a shared-memory SIMD computer. Procedure
ALLSUMS of section 2.5.2requires n processors Py, Py, ..., P,_,. Initidly, P, holds
x;; when the procedure terminates, P; holdss;. The procedure runsin O(log n) timefor
a cost of O(nlog n). Thiscost is not optimal in view of the O(n) sequential operations
sufficient to compute the prefix sums.

13.2.1 A Specialized Network

Thefirst question that comes to mind is: Do we really need the power of the shared-
memory model to implement procedure PARALLEL SUMS?A partial answer to this
question isprovided in section 2.8. Thereit issuggested that recursivedoubling can be
implemented on a special-purpose network of processors, asillustrated in Fig. 13.1for
n = 8. Here each square representsa processor. Thereare 1 + log n rows, each with n
processors, that is, n+ nlog n processors in al. Assume that the processors in each
row are numbered from 0 to n— 1 and that the rows are numbered from 0 to log n
Processor i in row j + 1 receives input from

(i) processor i in row j, and
(ii) processor i — 27 in row j,if i = 27,
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Figure131 Recursivedoublingimplemented by special-pur pose network.

Each processor is capable of computing the sum of its two inputs and of sending the
result to the next row of processors using the connections indicated. A processor
receiving only one input smply passesthat input to the next row. The elementsof X
enter the network from one end (one element per processor), and the outputs are
received at the other end. All prefix sumsare computed in O(log n) time. Thisrunning
timeis the best possiblein view of the Q(log n) lower bound derived in section 7.3.2.
The network'scost is O(nlog?n). In other words, a model of computation weaker than
the shared memory is capable of achieving the same running time as procedure
ALLSUMS using a larger number of processors.

13.2.2 Using the Unshuffle Connection

It is possible to reduce the number of processors in the network to O(n) while
preserving the O(log n) running time. The idea, hinted at in problem 2.2, isto use a
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Figure 132 Unshuffle connection for computing prefix sums.

parallel computer with one row of processors and haveit simulate the network o Fig.
13.1. All processors operate synchronously. At each step, the results of the com-
putation are fed back to the processors as input. Depending on the value of a mask
variable computed locally, a processor may produce as output the sum o its two
inputs (if mask = 1) or simply propagate one of them unchanged (if mask = 0). Such a
scheme isillustrated in Fig. 13.2, again for n = 8.

There are two kinds of nodesin Fig. 13.2:

(i) the square nodes represent processors Py, P,,...,P,_, capable of computing
the mask variable and the addition operation and

(ii) thecircle nodesrepresent very simple processors capable of producing as output
two copies of their input; we denote the contents of these processors by yo, ¥,

ey yn—l’

The square processors send their outputsto the circle processors viaa perfect unshuffle
interconnection. (Thelatter isobtained by reversing the orientation of the arrowsin a
perfect shuffle mapping, asexplained in problem 2.2) Initialy, y; = x;fori =0, 1,...,
n — 1. During each iteration P; receives y; and y; , as input, except for P,, which
receives y, only. Now P; computes the value of mask to determine whether to produce
y; T y;_, or y; asoutput. Referring to Fig. 13.2, mask = 1 during thefirst iteration for
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al P;, except Py, for which mask = 0. Once the P; produce their outputs, the new
values o the y; are asfollows:

Yo = Xo
yi=xy +Xx;
V2= X3+ X4
V3= X5+ Xg
Y4 = Xo + X
Y, = X2+ X3
Y6 = X4 + X5
,V7=x6+x7-
During the second iteration, mask = 1 for al P, except wherei isa multiple of 4 and
the new values o the y; are
Yo = Xo
Vi=X;+Xx3+Xx3+ x4
Y2 =Xg + X;
VY3 = X3 + X3 + X4 + X
Ya=Xo+ X; + X,
Vs =X3 + X4+ X5 + Xg
Yo = Xo + X1 + X5 + X3
Y, :x4+x, +x6+x,.

During the third and final iteration, mask = 0 for those P; wherei isa multiple of 2
and mask = 1 for the rest. Following the computation by the P;, y, = s, for al i. All
prefix sums are therefore computed in O(log n) time using O(n) processorsfor a cost of
O(nlogn), which is not optimal.

It should be noted that the parallel computer just described is clearly weaker
than one with a shared memory. The comparison with the network of section 13.2.1,
however, is more difficult:

1 On the one hand, the present model may be considered weaker since the
interconnection it usesis not as specialized as the one in Fig. 13.1.

2 Ontheother hand, it may be considered stronger asit comprises more powerful
processors, having to compute the mask variable locally at each iteration and
behave according to its value.
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13.2.3 Prefix Sums on a Tree

We now describe a parallel algorithm for computing the prefix sums that combines
the advantages of those in the previous two sections without their disadvantages.
First, the algorithm is designed to run on a (binary) tree of processors operating
synchronously: A treeis not only less specialized than the network in section 13.2.1,
but in addition is a simpler interconnection than the perfect unshuffle. Second, the
algorithm involves no mask computation and hence requires very simple processors.

Let theinputs xq, X,, ..., X,—; residein the n leaf processors Py, P,, ..., Py—; Of
a binary tree, oneinput to aleaf. When the algorithm terminates, it isrequired that P;
hold s;. During the algorithm, the root, intermediate, and leaf processors are required
to perform very simple operations. These are described for each processor type.

Root Processor

(1) if an input is received from the I€ft child
then send it to the right child

end if.

(2) if an input is received from the right child
then discard it
endif. O

I ntermediate Processor

(1) if an input is received from the left and right children
then (i) send the sum of the two inputs to the parent
(i) send the left input to the right child
end if.
(2) if an input is received from the parent
then send it to the left and right children
endif. O

Leaf Processor P;

(1) siex;.

(2) send the value of x; to the parent.

(3) if an input is received from the parent
then add it to s;
endif. O

Note that the root and intermediate processors are triggered to action when they
receivean input. Similarly, after having assigned x; to s; and sent s; toits parent, a lesf
processor is also triggered to action by an input received from its parent. After the
rightmost leaf processor has received log n inputs, the valuesof sy, s,, ..., s,_, arethe
prefix sums of xg, X,, «vvy Xy— .
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Example 13.1
The agorithm isillustrated in Fig. 13.3 for the input sequence X = {1, 2,3,4}. [

Analysis. The number of steps required by the algorithm is the distance
between the leftmost and rightmost leaves, whichis2log n. Thus t(n) = O(log n). Since
p(n)=2n—1,¢(n) = Qnlog n). Thiscost is not optimal. It is not difficult, however, to
obtain a cost-optimal algorithm by increasing the capabilitiesdf the lesf processors.

Let a processor treewith N leaves Py, P,, ..., Py_, beavailable,wheren> N.
We assume for simplicity that n is a multiple d N, athough the algorithm can
eadly be adapted to work for dl vaues o n. Given the input sequence
X = {X¢,%1,...,X,-1}, leaf processor P; initidly contains the elements X,

N+ 1s - e e “"’”)+( - .- The root and intermediate processors behave exactly as
be(ore whereasthe Ieavas now execute the steps given in the next procedure. | n what
follows, »; denotes the number of 1 bitsin the binary representation o i, that is,

Uo - O
v; = 1+ Uimod2Uiess,
and m = n/N.

Leaf Processor P;

(1) Compute dl prefix SUMS of Xims Xim+ 13-« » Xim+m—1, StOre the results in s;,,
Simt 1+ +» Sim+m17 and send s;,+m— 1 t0 the parent processor.

(2 Seta temporary sum r; to zero.
(3) if an input is received from the parent

then add it to r;
end if.
(4) if r; isthe sum of exactly v; inputs received from the parent
then add r; to each Of Sips Sim+1.-2u s Simtm—1
endif. [

In order to understand the termination condition in 4, note that v; is precisdy the
number of roots of subtrees to the left of P; that will send input to P;.

Analysis. Thenumber of data that arerequired by theal gorithm to travel up
and down the tree is independent of the number of elements stored in each lesf
processor. It follows that the running time o the algorithm is the sum of

1 thetime required by leaf P; t0 COMPULE S;ps Sim+ 15 - -+ 5 Sim+m— 3 a@nd then send
Sim+m-1 tO its parent [ie., O(n/N) time] since al leaves execute this step
simultaneously;

2 the time required by the rightmost lesf Py_, to receive its final input [i.e.,
O(log N) time]; and

3 thetimerequired by the rightmost legf Py - (thelast processor to terminate) to
add ry_, to each of the sumsit contains [i.e., O(n/N) timg].
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Figure 13.3 Computing prefix sums on tree of processors.

Thus t(n) = 0(n/N) T 0(log N). Since p(n) = 2N — 1, ¢(n) = O(n T N log N). It fol-
lows that the algorithm is cost optimal if NlogN = O(n). For example,
N = O(n/log n) will suffice to achieve cost optimality.

It should be noted here that the algorithm's cost optimality isdue primarily to
the fact that the time taken by computations within the leaves dominates the time
required by the processors to communicate among themselves. This was achieved by
partitioning the prefix sum problem into digoint subproblems that require only a
small amount of communication. As a result, the model's limited communication
ability (subtrees are connected only through their roots) is overcome.
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13.2.4 Prefix Sums on a Mesh

We conclude this section by showing how the prefix sums of a sequence can be
computed on a mesh-connected array o processors. Our motivation to study a
paralel algorithm to solve the problem on this model is due to two reasons:

1 Asshown in the conclusion o section 5.3.2, when the time taken by asignal to
travel aong a wire is proportional to the length of that wire, the mesh is
preferable to the tree for solving a number o problems. These problems are
characterized by thefact that their solution timeis proportional to the distance
() from root to legf in the treeand (ii) from top row to bottom row in the mesh.
The problem o computing the prefix sums o an input sequence is one such
problem.

2 Asindicated in section 4.8, a mesh with n processorscan sort a sequenced n
inputs faster than a tree with n leaves regardless of any assumptions we make
about thesignal propagation time along the wires. Thisis particularly relevant
since sorting is an important component of our solution to the problems
described in the next section.

For ease of presentation, we assume in what follows that n is a perfect square
and let m = n'/2. The prefix sums of X = {4, X{,...,x,-;} can be computed on an
m X m mesh-connected computer asfollows. Let the n processorsPy, P,, ..., P,_; be
arranged in row-magjor order. Initially, P; contains x;. When the algorithm terminates,
P, contains s;. The algorithm consistsd three steps. In the first step, with all rows
operating in paralel, the prefix sums for the elements in each row are computed
sequentially: Each processor adds to its contents the contents of its left neighbor. In
the second step, the prefix sumsaf the contentsin the rightmost column are computed.
Finally, again with al rows operating in parale, the contents of the rightmost
processor in row k — 1 are added to those o all the processorsin row k (except the
rightmost). The agorithm is given in what follows as procedure MESH PREFIX
SUMS. In it we denote the contents of the processor in row k and column j by w,;,
where0 <k<m-—land0<j<m—-1

procedure MESH PREFIX SUMS (X, S)

Sep 1l for k=0tom— 1doin paralld
forj=1tom—1do
Upj e~ Uy + Uy ;g
end for
end for.

Sep2 for k=1tom-— 1ldo
Upm—1 < Um—1 + Up—1,.m—1
end for.
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Step3 for k=1tom - 1doin parald
for j =m — 2 downto 0 do
Upj < Uy + Uy 1 m—1
end for
end for. [

Note that in step 3, u,_; .- IS propagated along row k from the processor in
column m — 1to that in column 0, each processor adding it toits contents and passing

it to its left neighbor.
Analysis. Each step requires O(m) time. Therefore, t(n) = O(n'/?). Since
p(n) = n, c(n) = O(n*"?), which is not optimal.
Example 13.2
Let n = 16. The behavior of procedureMESH PREFIX SUMSisillugtratedin Fig. 13.4.
Inthefigure, 4y =x; + x;., ... tx. O
Now assume that an N2 x N2 mesh of processors isavailable, where N < n.

To compute the prefix sums of X = {xq,Xy,...,X,-1}, €ach processor initialy
receives n/N elements from X and computes their prefix sums. Procedure MESH

Xo X4 Xz X3 Xo | Aot | Aoz | Poa

Xg | X | % | % Xp | Ass | Ass | Asr
Xg Xg | X0 | *44 Xg | Agg [Ag 10| Pa1
X2 | X3 | %14 | %5 X2 |Arz13 Ar2.14] Arzi1s

(@ INITIALLY (b) AFTER STEP 1

Xo | Aot | Aoz | Ao Xo | Aot | Aoz | Aos
X 1 Aus | Ass | Aoy Acs | Aos | Pos | Aoz
Xg | Agg | Ag1o| Aot Age | Aoo | Aoto| Aot
X12 |A12,13| Arz.14] Aoits Aotz | Po.1a [ Aota | Pots

(¢c) AFTER STEP 2 (d) AFTER STEP 3

Figure134 Computing prefix sums using procedure MESH PREFIX SUMS.
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PREFIX SUMS can now be modified, in the same way as the tree algorithm in the
previoussection, so that when it terminates, each processor containsn/N prefix sums
of X. The modified procedure has a running time of 0(n/N) + O(N'/?) and a cost of
O(n) T O(N*3). This cost is optimal when N = O(n?3).

13.3 APPLICATIONS

I'n this section we show how an efficient algorithm for computing the prefix sums of a
sequencecan be used to solve decision and optimization problems. Two problemsare
chosenfor illustration: a decision problem, namely, job sequencing with deadlines, and
an optimization problem, namely, the kngpsack problem. For each of these problems
we give an algorithm that runs on a tree-connected parallel computer. A crucial step
in both algorithmsisthe computation of the prefix sumsof a sequence asdescribedin
section 13.2.3. We conclude this section by showing that despite their simplicity the
tree solutions to the two optimization problems are not as efficient as their mesh
counterparts.

13.3.1 Job Sequencing with Deadlines

A setof njobsI = {jo,j1,--+1Ja—1; iSCiVeN to be processed on a singlemachine. The
machinecan executeonejob at atime, and when it isassigned a job, it must complete
it before the next job can be processed. With each job j; is associated

(i) aprocessing timet; and
(i) adeadlined; by which it must be completed.

A scheduleis a permutation o the jobsin J that determines the order of their
execution. A scheduleis said to be feasible if each job finishes by its deadline. The
question is: Given njobs {jo, j1, - - - »jn—1}s With processing times{t,, £, ..., -} and
deadlines {dq,d,;,...,d,_}, does a feasible schedule exist? It turns out that this
question can be answered in the affirmativeif and only if any schedulewherethe jobs
are executed in nondecreasing order of deadlinesis feasble. Therefore, to solve the
problem, it suffices to arrange the jobs in order of nondecreasing deadlinesand test
whether thisyieldsa feasible schedule. I n caseit does, we know that the answer to the
question is yes, otherwise the answer is no. Sequentially, this algorithm requires
O(nlogn) time to sort the jobs and then O(n) time to test whether each job can be
completed by its deadline.

We are now ready to present our paralel algorithm for solving the sequencing
problem based on the precedingidea. The algorithm runs on a tree-connected parallel
computer with lesf processors Py, P1s..., P,_,. We assumefor notational simplicity
that in the original statement of the problem, the jobsare already arranged in order o
nondecreasing deadlines; in other words,

dogdlg"'gdn_l.
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Initialy, leaf processor P; contains t; and d,. The algorithm is given as procedure
TREE SEQUENCING.

procedure TREE SEQUENCING (J, answer)
Step 1. Compute sq, Sq,..-,8,- 1, the prefix sums of t,, t,,..., 6, ;.

Step2 (i) lesf processor P,

if 5; <d;
then send "yes" to parent
else send "no" to parent
end if

(ii) intermediate processor
if inputs from both children are "yes"
then send "yes" to parent
else send "'no" to parent
end if

(iii) root processor
if inputs from both children are "yes"
then answer « "feasible schedule exists”
else answer « ""'no feasible schedule"
end if. O

Example 13.3

Let n = 4 with {1, t;, t, t3} = {1, 3, 3, 4) and {d,, dy, d,, d3} ={3,5,7,9).Thus
{50,51,52,53} = {1,4,7,11}. Wehaves, < dy, s; < dj,ands, < d,; however,s, > d; and
a feasible schedule does not exist for this problem. []

Analysis. Both steps 1 and 2 require O(logn) operations. However, the
running time of the algorithm isdominated by the time taken to initially sort the jobs
in theleavesin order of nondecreasing deadlines. This timeisknown from section 4.8
to be Q(n).

13.3.2 The Knapsack Problem

Wearegiven a knapsack that can carry a maximum weight of Wand a set of » objects
A=(a, a,,... ,d,—1} Whose respective weights are {wq, wy,...,w,_,}. Associated
with each object isa profit, the set of profits being denoted by {p,, P1>...,P.-1} IfWE
placein the knapsack afraction z; d the object whoseweight isw;, where0 < z; < 1,
then a profit of z;p; is gained. Our purpose is to fill the knapsack with objects (or
fractions thereof) such that

(i) the total weight of the selected objects does not exceed W and
(i) thetotal profit gained is as large as possible.
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Formally, given 2n + 1 positive numbers wg, wy,..., w,_,, W, Po> Pisvvs Puey, LIS
required to maximize the quantity
n-1
Q= Z Z; X pi
i=0
subject to the two conditions
1 0<z<1foradliand
2 Yoz x ws W
An optimd solution is a sequence Z = {z,, 2,, ...,2,-(} that maximizes Q while

satisfying conditions 1 and 2 Such asolution isobtained if the objectsare examinedin
nonincreasing order o the ratios p;/w;. If an object whose turn has come to be
considered fitsin the remaining portion o the knapsack, then the object isincluded;
otherwise only a fraction o the object is placed in the knapsack. Sequentially, this
requires O(nlog n) timeto sort the profitsand weightsand then O(n) time to examine
al the objectsone at a time.

Our paralléel algorithm for finding the optimal sequence{z,,z,, ...,2,-,} USES
this approach. It runs on a tree-connected parallel computer with leaf processors P,
P,,...,P,_,.Weassumefor notational smplicity that in the original statement o the
problem, the objects are already sorted in order of nonincreasing profit to weight
ratios, in other words,

Po/Wo Z P1/W( = -+ 2 Ppo1/Wa—1.

Initialy, leaf processor P; contains w;, p;, and W. The agorithm is given in what
follows as procedure TREE KNAPSACK. When the procedure terminates, the
solution {zq, z4,...,2,~1} residesin the leaves. Let s_, = 2W

procedure TREE KNAPSACK (A, W, Z)

Sep L (1.1) Compute so, 8. .., 5.— 1, the prefix ums d we, w,, ... s Weeg
(2.2)for i=1ton—1doin paralld
P; COMPULES s;_ 4
end for.

Sep 2 fori=0ton— 1doin parale
if s; <W
thenz;« 1
eseif s;> Wand s;_; < W
then z; — (W — s;_,)/w;
esez;«0
end if
end if
end for. O
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Note that the total profit Q may be computed at the root as follows:

(i) Each leaf processor P; computes
profit, « z; X p;

and sends profit, to its parent.
(i) Eachintermediate processor adds the two inputs received from its children and
sends the result to its parent.
(iii) The root adds the two inputs received from its children; thisis Q.

Example 134
Lan=4 W|th {W,, Wy, Wy, W3} = {5,91 2, 4}’ {pOs P15 P2, p3} = {1007 1351 261 20}’ md

W =15. Thus {s,, s,, 53, 53} ={5, 14, 16, 20). Snce so<W and s; <W, zo=2,=1. Al
s, > Wand therefore z, = (15— 14)/2 = 05. Findly, s; > W and hencez; =0. [

Analysis. Steps 1 and 2 require O(logn) and O(1) steps, respectively.
However, the running time of the algorithm isdominated by the timetaken toinitially
sort the profits and weightsin the leavesin order of their nonincreasing ratios. This
time is known from section 4.8 to be Q(n).

13.3.3 Mesh Solutions

Aswe saw in the previous two sections, the tree solutions require at least Q(n) time if
theinput sequences are not properly sorted. Our purpose hereis to briefly show that
in these circumstances a mesh-connected parallel computer isa more attractive model
for solving these decision and optimization problems.

Assume that the inputs to the job sequencing and knapsack problems are not
sorted initially, as required by procedures TREE SEQUENCING and TREE
KNAPSACK, respectively. If an n!/2 x n!/2 mesh-connected computer is available,
then

(i) aninput sequence with nelements can be sorted on the mesh in O(n'/?) time as
indicated in section 4.8 and

(i) each of the two procedures TREE SEQUENCING and TREE KNAPSACK
can be easily modified to run on the mesh in O(n'/?) time.

It follows that the overall running time required to solve each of the job sequencing
and knapsack problemsis

tn) = O(n'/2).

Thisissignificantly faster than the time that would be required by the corresponding
tree algorithms. Since p(n) = n, it followsthat c(n) = O(n3?). Thiscost is not optimal
in view of the O(nlogn) running time sufficient to solve these two problems
sequentially.
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Assumenow that an N*/2 x N2 meshisavailable, whereN < log?n. Weknow
from section 4.8 that amesh with thismany processor scan sort an n-element sequence
with optimal cost O(nlogn). Since log®n < n?’ for sufficiently large n, we also have
from section 13.2.4that the prefix sums of an n-element sequencecan be computed on
this N*2 x N'/2 mesh with an optimal cost of O(n). These two operations, namely,
sorting and computing the prefix sums, dominate all others in solving the job
sequencing and knapsack problems. It follows that these two problemscan be solved
optimally on a mesh of processors.

13.4 PROBLEMS

13.1 Arethe"circde" processorsin Fig. 13.2 realy needed?

132 Do the computers described in sections 13.2 and 13.3 belong to the SIMD or MIMD
class?

133 State formally the modified procedure MESH PREFIX SUMS described at the end of
section 13.2.4 and whose cost is optimal.

134 A number s, and two sequencesd numbers{a,,a,, ...,a,} and {by, b,,...,b,} aregiven.
It is required to compute the sequence{s,, s,, ..., s,} from the recurrence

s;=a;s—y + b, i=12...,n

Sequentially, this can be done in O(n) time. Show how procedure PARALLEL SUMS
can be modified to produce the desired sequence in O(logn) time on an n-processor
paralel computer. Define your model of computation.

135 Repeat problem 13.4 for the following computations:
(@) si=si—1 X 4
(b) s; = min(s;-,, a)

() s, = max(s;_y, @)

@) s;i=ais;-, -:-bisi—z

) s =(asi-1 T b)cisi—, T d;
(B Lo bt

136 Let s, and {a,, a,,-..,a,) belogical variables taking the value true or false. Repeat
problem 13.4 for the following computations:
(a) s; =s5;-4 and a;
©) si=si-,0 q
(©) si =si— XOF a;

137 Prove that a feasible schedule exists if and only if any schedule where the jobs are
executed in nondecreasing order of deadlinesis feasible.

13.8 Modify procedure TREE SEQUENCING for the case where N = logn processors are
availableto perform both theinitial sorting as well assteps 1 and 2. Analyzethe resulting
procedure and discussits cost optimality.

139 Consider thefollowing variant of the job sequencing with deadlines problem. With each
jobj; isassociated a profit p; = 0. Profit p; isearned if and only if job j; iscompleted by its
deadline. It isrequired to find asubset of thejobs satisfyingthefollowing two conditions:
(@)all jobsin the subset can be processed and completed by their deadlines and
@i)the sum o the profits earned is as large as possible.
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Assuming that ¢, =1 for al i, describe a parallel agorithm for finding an optimal
solution.

13.10 Prove that an optimal solution to the knapsack problem is obtained if the objects are
examined in nonincreasing order of the profit-to-weight ratios.

13.11 Repeat problem 13.8 for procedure TREE KNAPSACK.

13.12 In a variant of the knapsack problem, the condition that 0 < z; < 1 is replaced with
z; = 1orz; =0, that is, the ith object iseither included in the knapsack or not included.
Derive a parallel algorithm for this variant known as the 0-1 knapsack problem.

13.13 Consider the problem of maximizing the function of n variables

h(xy, Xgs ooos X)) = 3, GilX)s
i=1

where ¢,(0) = 0 and g,(x;) = 0 subject to the conditions
(i) 37, x;=xand
(i) x; =0 foralli.
One method for solving this problem is dynamic programming. In it the sequence fi(x).
fo(x), ..., f(x) is constructed from

Silx) = max [g;(x;) + fi-1(x — x))],
O0<x;€x
where fo(x) = 0. The sequencex,(x), x,(x), .. ., x,(x) isobtained in thisway, where x;(x) is
the value that maximized g(x;) ¥ f;_,(x — x;). Computationally, x;(x) is found by
probing therange[0, x] at equal subintervals. Deriveaparallel version of thisalgorithm.

13.5 BIBLIOGRAPHICAL REMARKS

As mentioned in chapter 2, the problem of computing in parallel the prefix sums of a sequence
has received considerable attention dueto its many applications. The parallel computer in Fig.
13.2 was proposed in [Stone]. Other algorithms for a variety of models and their applications
are described in [Akl 1], [Akl 2], [Deked], [Fich], [Goldberg], [Kogge 11, [Kogge 2],
[Kruskal 17, [Kruskal 2], [Ladner], [Meijer 1], [Reif], [Schwartz], and [Wagner]. The tree-
based algorithm of section 13.2.3 is from [Meijer 2].

All these algorithms exploit the associativity of the addition operation in order to
compute the prefix sums. It is shown in [Kogge 2] that given two sequences of inputs
{a,,a,,...,a,_,} and {by,b;,...,b,_,), a recursive doubling algorithm can be used to
compute, in logarithmic parallel time, outputs {s,, sy,...,s,-;} of theform

So =bg
5; = f(bi, glag, 5 ) 1<ig<n-1
Here f and g are functions that have to satisfy the following restrictions:
1 f isassociative, that is, f(x, f(y,z))= f(f(x, y),2);

2. g distributes over f, that is, g(x, f(1, 2))= f(g(x, y),g(x, 2));and
3. gissemiassociative, that is, there exists a function h such that g(x, g(y, 2)) = g(h(x, Y), z).
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For example, if f is addition and g is multiplication, the algorithm computes the first-order
recurrences

So = b,
S;=ai5;-4 + b, 1<ig<n—1.

If a, = 1forall i, thes;’s thus computed are the prefix sums of {b,, by,...,b,-}. Theresultsin
section 13.2imply that al recurrences with functionsf and g as describedin the precedingcan
also be computed in O(log n) time on an n-legef tree and O(n'/2) time on an n/2 x n'/2 mesh. In
particular, any binary associative operation such as multiplication, computing the maximum,
computing the minimum, and, or, xor, and so on, can replace addition in these algorithms.
Severa other examples are provided in [Stone].

The need to compute the s;’s for various functions f and g arisesin many applications.
Two such applications are describedin[Meijer 2], on which section 13.3is partly based. Other
applications are mentioned in fFich], [Kogge 1], [Kogge 2], [Kruskal 1], [Ladner], [Reif],
and [Stone]. They include the evaluations of polynomials, general Horner expressions, and
genera arithmetic formulas; the solution of linear recurrences;carry look-ahead adder circuits;
transforming sequential circuits into combinatorial circuits; the construction of fast Fourier
transform circuits; ranking and packing problems; scheduling problems; and a number o
graph-theoretic problemssuch as finding spanning forests, connected components, biconnected
components, and minimum-weight spanning trees. Also of interest is the related work on
computing the logical or of n bits ([Cook]), genera arithmetic expressions ([Brent] and
[Winograd]), linear recurrences ([Hyéfil]), and rational expressions([Kung]).

Decisionand optimization problems are treated in [Horowitz], [Lawler], and [Papadi-
mitriou]. Most decision problems such as the traveling salesman problem (problem 10.50) and
the subset sum problem (example 12.1) are NP-complete. Their optimization counterparts
(problems 12.9 and 13.12) are said to be NP-hard. We mentioned in section 10.8 that all known
sequential algorithms for these problems run in exponential time, and al known parallel
agorithms have exponential cost; see, for example [Karnin], [Kindervater], [Mead], and
[Mohan]. However, becausedf their many applications, solutions to these problemsare needed
in practice. Fast approximation algorithms are therefore used in these cases, as illustrated in
problem 1.14 and in[Horowitz] and[Papadimitriou]. There are many kinds of approximation
agorithms. For example, an approximation algorithm may provide a solution that is
guaranteed to be very close to the optimal solution. Alternatively, the solution may be
guaranteed to be optimal with a certain probability. Or the solution may combine the
preceding two properties, that is, contain at most a certain amount of error with a known
probability. Parallel approximation algorithms are describedin [Cole], [Felten], and [Peters).
Parallel implementations of dynamic programming are proposed in [Gilmore] and
[Kindervater].
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14

The Bit Complexity
of Parallel Computations

14.1 INTRODUCTION

The theoretical models o computation commonly used to design and analyze
algorithms, whether sequential or parallel, are usually based on two important
assumptions.

1 Thefirst of theseassumptionsisthat the sze o the smallest addressable unit in
memory, or word, isfixed. On a binary computer, for example, each word has
length b bits for some constant b.

2 The second assumption isthat the entire word is available at once. Again for a
binary computer, this means that all b bits are accessible when needed.

Asa result of these two assumptions, al fundamental operations on pairs o words,
such as comparison, addition, and multiplication, take a constant amount of time
on conventional models of computation. All previous chapters make assumptions 1
and 2.

The most obvious reason (and indeed a good one) for including these
assumptions in the theoretical modelsis that they are a faithful reflection of redlity.
Existing digital computers have a fixed-size word, and all digits of a word can be
reached simultaneously. This is not to say that there are no situations where the
preceding two assumptions do not hold. For many applications, we may want to
make the size of a word variable, and/or the digits forming a word may not all be
available at the same time. | n these cases, the theoretical models need to be modified
to count digit operations, whilein practice softwareis used to enhance the existing
fixed-sze hardware. The net dfet—in both theory and practice—is that the time
required by operations on pairs of wordsis no longer a constant but rather afunction
that grows at least linearly with the word sze.

The purpose of this concluding chapter is to describea number o architectures
that are specificaly designed to handle those situations where the conventiona

361
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assumptions do not hold, that is, where

1 the word sizeis variable and/or
2 the digits forming a word arrive serialy, that is, one digit every time unit.

Although the concepts presented henceforth are applicable to al data types and
numbering systems, we shall assume for concreteness that the data are integers
expressed as strings of bits, and we shall take operations on bits as the basic
operations.

The following problems are considered:

adding n b-bit integers;

. multiplying two b-bit integers;

. computing the prefix sums of a sequence of n b-bit integers;

. multiplying two n x n matrices of b-bit integers;

determining the kth smallest of a sequence of n b-bit integers; and
6. sorting n b-bit integers into nondecreasing order.

ol > w N

Thesolutions to these problemsare al based on the concept of "' on-the-fly" use of the
input and intermediate bits. To be specific, for each problem we describe a special-
purposearchitecture, or network, that processesbitsasthey arriveat the interface with
the outside world. The concept is also applied within the network through pipelining
until the output isproduced. Thisisillustrated in Fig. 14.1. The networks are obtained
by interconnecting a collection of simple devicesknown as gates. A gate receivestwo
bits as input, computes a function of these two bits, and produces a single hit as
output. This output may be one o another gate's two inputs. In anayzing these
networks, we use the following measures:

1. Number of processors used: Thisis egual to the number of gates used to build
the network.

2. Solution time: Thisisthe timerequired by a network to produceits output, that
is, the time elapsed from the moment thefirst input bit enters the network to the
moment the last output bit leaves the network. The unit of time used in our
analysis is the time required by a gate to produce its output.

3. Cost: Thisisthe product of the previous two measures.

From the preceding description, it is clear that we view these networks as paralléel
algorithms. These algorithms receive their input words in parallel, each word being
presented one bit every time unit (i.e., bit serially), hence the title of this chapter.

The remainder of this chapter is organized as follows. We begin in section 14.2
by describing a basic network that serves as a building block for most subsequent
networks. Each of thefollowing sectionsis devoted to one of the problemslistedin the
preceding.
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INPUTWORD 1 1100101 ——— )— 10101 OUTPUT WORD 1
INPUT WORD 2 1001001 ——f — 00010 OUTPUT WORD 2
NETWORK
INPUT WORD i 1000101 ———y — 11010 OUTPUT WORD m

Figure14.1 Network for processng variable-size input words arriving bit serially.

14.2 ADDING TWO INTEGERS

Assumethat we want to add two b-bit integers x and y whose binary representations
are

x(b— 1) x(b—2)...x(00 and yb — 1) y(b — 2)...y0),
respectively. The addition can be performed by a network known as a serial adder
(SA). This network consists of a number o gates that perform on pairs o bits the
operations and, or, and xor defined asfollows (thefirst two of these operations on bits
were defined in chapters 5 and 10):

0and 0 =0, 0and 1 =0, land 0 =0, land1=1,
OQor0=0, Qorl=1 - lor0=1, lorl=1,
0 xor 0 =0, Oxorl=1, 1xor0=1, 1xor 1=0.

The behavior of the serid adder network is explained with the help of Fig. 14.2.
Integers x and y are fed into the network bit seridly, least significant bit first.
Denoting the bitsavailableat timei at inputs u, v, and c and outputs s and r by «;, v;,
¢, 8;, and r,, respectively, we have

u; = x() fori >0,
v; = yl) fori=0,
§; = (U;—y XOF D;_ ;) XOF ;4 fori>1,
ri=(uyando_,) Or (- OF o,_y) and ¢;-y) fori>1,
G =T fori=1,
¢o =0.

The network of Fig. 14.2 therefore behaves as required: The sum o x and y is
produced one bit at a time at output s, starting with the least significant bit at time
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—_—
u L s
vV ————
SA
C r
Figure 14.2 Seria adder.
—_———

] SA

Figure 14.3 An SA-box.

i = 1 The network has the following properties:

1. It can be built using a constant number of gates.

2 Eachgate hasafixedfan-out, that is, the number of other gates to whichit needs
to send an output signal is a constant.
The integers X and y can be arbitrarily large.
The bitsof x and y arrive serially, and the sum of x and y is produced bit serially.
The sum is produced in O(b) time.

. Given that the running time is O(b) and the number of processors is O(1), the
network's cost is O(b). This cost is optimal since Q(b) operations are needed to
receive the input.

(20 62 INF R V]

For smplicity, weshall represent the serial adder of Fig. 14.2 asshownin Fig. 14.3(i.e.,
weomit input c and output r and the feedback line connecting them) and refer toit as
an SA-box.

14.3 ADDING n INTEGERS

Suppose now that we want to compute the sum of n b-bit integers a,, a,,...,a,_;.
Two solutions to this problem are described. Both solutions assume that b is a
variable and that each of the integers arrives bit serialy.

14.3.1 Addition Tree

The sum can be computed using a tree of SA-boxeswith n/2 leaves(and log n levels),
as shown in Fig. 14.4 for n = 8.

We call this network the addition tree. Starting at time i = 0, each one o the
integersto beadded isfed one hit every time unit, least significant bit first,into thew or
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v input of aleaf. The sum of the nintegersis produced on the s output of the root,
beginning with the least significant bit at time i = log n. Since each of the n integers
has b bits, the time required by the addition tree to compute the sum is a function of
both nand b and is given by

t(n, b) = O(log n) + O(b).

Also, since the tree consists of n— 1 SA-boxes, each with a fixed number of gates, the
number of processors, also a function d nand b, is given by

p(n, b) = O(n).
Finaly, the tree's cost is
¢(n, b)= O(n log n+ nb).

For b= logn, this cost is optimal since Q(nb) operations are needed to receive the
input.

Theforegoinganalysisaf the addition tree assumesthat thetimeit takesabit to
propagate along awirefrom one SA-box to the next isconstant. If, on the other hand,
the propagation timeisassumed to be an increasingfunction of the length of the wire,
then the preceding expressiondescribing the addition time, namely, O(log n) + O(b), is
no longer vaid. Indeed, as pointed out in the conclusion of section5.3.2,in any planar
circuit layout of the addition tree, the edges in consecutive levels and hence the
propagation timefor asignal grow in length exponentially with the level number. In
thiscase, a more regular structureis preferred where wires have constant length. Such
a structure is provided by the mesh connection.

a,
a, SA

SA
a
a, ——f SA

SA I—— SUM

a,
a — SA

SA
3
a | SA

Figure14.4 Addition tree.
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14.3.2 Addition Mesh

An addition mesh consisting of SA-boxesisillustrated in Fig. 14.5 for adding twenty-
six b-bit integers bit serially. The starting time for each SA-box, that is, thetimei at
which the box beginscomputing, isindicated below the box in thefigure. Note that all
wires have the same length regardless of the size of the mesh, and therefore the
propagation time from one SA-box to the next is constant. It is easy to see that in
general

t(n, b) = O(n''?) + O(b),
pln, b) = O(n),
c(n, b) = O(n®? + nb).

For b > n'/2, this cost is optimal in view of the Q(nb) lower bound derived in the
previous section. Furthermore, the period of the network (i.e., the time separating the
last output bit of oneinput sequence and thefirst output bit of thefollowing sequence)
is constant. Therefore, the addition mesh represents a definite improvement over the
addition tree assuming that the propagation time of asignal isan increasing function
of the distance traveled.

14.4 MULTIPLYING TWO INTEGERS

We now turn to the problem of multiplying two b-bit integers
X=x(b—-1xtb—-2)...x(0) and y=yd—1) yb — 2)...y(0)
By the definition of multiplication, the product is obtained as follows:.

X

yh—=1) yb=2 - o o w2 y) ¥O)

Zo2 Zo1  Zgo
+

Zia  Z3y Zy0 0
+

Za2  Z21 Za0 0 0
. -

Zp-1,1 Zp-1,0 0 0 0 0

w(3) w(2) w(l) w(0)
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where z; = y(i) X x(j). In other words x x y = Zf;(} r;, where r; is a binary number

given by
ri= 2 Ziy Zi0 0...0 fori=0,1,...,b— 1
Note that r; has exactly i zeros to the right of z;,.

Since the product is expressed as the sum of a collection of binary integers, we
can use our addition tree or addition mesh to perform the multiplication.

14.4.1 Multiplication Tree

We begin by considering the network in Fig. 14.6. For input integers arriving bit
seridly at a and g, the network behaves as follows:

h;=a; or f;,
d,=h;_,and g,_,,
€ =di-1,
Ji=hi-y.

This means that bit d at timei is the result of computing the and of two bits (hand g)
available at timei — 1. One of these two bits (bit g) propagates down (ase) while the
other (bit h) cycles back (asf). Theor of aand f is how computed to produce a new
valuefor h. If input ais0 at all times, except for a singletime unit whereit is1, then the
left-hand side of the network servesto capture that 1 bit and maintain it asinput to
the right-hand side aslong as needed. For simplicity, we represent the network of Fig.
14.6 as shown in Fig. 14.7 and refer to it as the A-box.

A multiplication tree for computing x X y consists of an array of A-boxes A,,

———— @

- —_————

@

Figure 14.6 Special-purpose network for capturing I-bit input.
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P —

l
n

- —_———— - —f

Figure14.7 An A-box.

A, , A,_, followed by an addition tree with b/2 leaves. Thisisillustrated in Fig.
148 for b=8.

Initialy, al inputsare set to zero. Integer x isnow fed into the g input of thetop
A-box, one bit per time unit; thus, bit x(i) is made available to box A, at time i.
Similarly, integer yisfed into theainputsd all A-boxesone bit per box such that y(i)
is made available to A4; at timei. Thefirst bit of the product emerges from the root
after 1 + logb time units. Therefore, for the multiplication tree we have

t(b) = O(log b + b) = O(b),
p() = O(b),
c(b) = 0(b?).

14.4.2 Multiplication Mesh

Given that thetwo integers x and y to be multiplied arrive bit serially, we must ensure
(aswedid for the tree) that the strings r;, whose sum gives the product, are properly
formed and fed into the mesh at correct times. Let us reexamine the addition mesh. In
Fig. 145 SA-boxeswith the same starting timefall on the same diagonal. We can say
that on diagonal j, the numbersto be added have to be fed into the network at timej.
Now recall that

ri=-""Zj Zy Zip 0--- 0.

If r;istheinput to an SA-box on diagonal j, then bit z;, must arrive at timei + j (since
r; hasi zeros to theright of z,,). In Fig. 14.9, the pair of indices (i,m) below the SA-
boxesareinterpreted asfollows: bit z;, of r; must arrive at SA-box (i,m)on diagonal j
attimem=iT]j.

We are now ready to describe the multiplication mesh. It uses the A-box
presented in the previous section aswel asa delay network shownin Fig. 14.10. This
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1 2 3 4
7/’ //
// Ve
SA SA SA SA SA
0,1 24 J/ 38 9,13 10,15
// Ve
SA SA SA SA SA
1.3 47 s 812 11,16
// Ve
SA SA SA SA SA
58 7.1 7 1217 17,23
//
SA SA SA SA SA
6,10 13,18 // 16,22 18,25
s/
SA SA SA SA SA
1419 15,21 19,26 2028
Figure 149 Transformingaddition mesh into multiplication mesh.
a —mmmee- 0 S—

Figure14.10 A D-box.

network, which we call a D-box, has the following behavior:

gi=0a;—,,

3n

that is, the output at timei isequal to theinput at timei — 1. A D-box may be built
using an and gate (or an or gate) both o whose inputs equal the bit to be delayed.
A multiplication mesh for b= 21 is shown in Fig. 14.11. It consists o the
addition mesh of Fig. 14.5augmented with A- and D-boxes. The bitsdf x arefed, least
significant bit first, into the top left corner. They circulate around the mesh in a
snakelike fashion along the dashed lines. Bit y(i) of y, on the other hand, is given as
input to the A-box associated with SA-box (i, m) at timem — 1 [i.e., when x(0) reaches
that box]. For the network of Fig. 14.11, both t(b) and p(b) are O(b). This means that
the multiplication mesh has exactly the same requirementsas the multiplication tree
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under the constant wiredelay assumption. The multiplication meshis, of course, faster
when the signal propagation time along a wiregrows as a function of the wire length.

We concludethissection by pointing out that the assumption madeat the outset
regarding the number of bits of x isreally unnecessary. A b-bit multiplication tree or
mesh will operate correctly for an x with any bit size provided y has b bits. Thus, if x
has 1 bits, then

tb, ) =0(b)+ 0() and p(b, ) = O(b)

for both multipliers.

14.5 COMPUTING PREFIX SUMS

Given a sequence A={a, a,,...,4q,-;; of n b-bit integers, it is required to com-
pute the prefix sums s, S1,...,5.—1» Where s;=a, +a, +... ta. Solutions to
this problem weredescribed in chapters 2 and 13, assuming that bisa constant and all
b bits of each integer a; are available simultaneously. We now show how a collection
of SA-boxescan be used to obtain all sums when theintegersa, a,,...,a,., havea
variable sizeand arrive bit serially. Two solutions are described: Thefirst usesvariable
fan-out gates, the second uses gates whose fan-out is constant. Both solutions are
recursive in nature.

14.5.1 Variable Fan-out

The first solution isillustrated in Fig. 14.12 for n= 8.

In general, a network for n = 2™ consists of two networksfor n= 2™ 1 followed
by n/2 D-boxes and n/2 SA-boxes. When n= 2, one D-box and one SA-box suffice.
Let usdefinethe depth d(n) of a network with inputs as the longest path from input to
output. For the network in Fig. 14.12,

d(2) =1,
d(n) = d(n/2) + 1,
that is, d(n) = logn. Therefore, the time requirement o the network in Fig. 14.12 is
t(n, b) = O(log n) + O(b).
The number of processors used is
p(n, b) = 2p(n/2, b) + O(n)
= O(n log n).

The fan-out of the gates used is1 + n/2. Thiscan be seen from Fig. 14.12, where the
value of s; has to be sent to one D-box and four SA-boxes.
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RECURSIVE
& — L [}

SOLUTION

ag RECURSIVE ——@__, S5

SOLUTION

Figure 14.12 Computing prefix sumson network with variable fan-out.

14.5.2 Constant Fan-out

The second solution isillustrated in Fig. 14.13for n= 8.

As mentioned in example 7.2 and section 13.2.2, the perfect shuffle connection
(and its inverse, the perfect unshuffle) may be regarded as a mapping from a set of
processorstoitsalf or from aset of processorsto another set of processors. Thelatter
of these connections is used to construct the network in Fig. 14.13. As with the
network in Fig. 14.12,

d(n)=logn,
t(n, b) = O(log n) + O(b),
p(n, b)= O(nlog n).
It is clear from Fig. 14.13 that the gate fan-out is 2.

14.6 MATRIX MULTIPLICATION

Itisrequired to compute the product of two n X nmatricesdf b-bit integers. Webegin
by showing how the networks of the previous sections can be used for the
computation of theinner product of two vectors of integers. A matrix multiplier isthen
viewed as a collection of networks for inner-product computation.
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Figure 14.13 Computing prefix sumson network with constant fan-out.

Let u=(ug, U,, ..., t4,—4) and v=_(vq, v,, ..., v,_y) be two vectors of b-bit
integerswhose inner product, that is,

uol)o + ulvl + e+ u,,_lli,,-l,

is to be computed. The n products «;v;, for i =0, 1,...,n — 1, can be computed in
parallel using n multiplication trees. This requires O(b) time and O(nb) processors.
Thesen products are now fed into an addition tree with #/2 leaves to obtain the final
sum. Thissecond stagerunsin O(log n) T O(b) time on O(n) processors. Consequently,
the inner product requires O(logn) T O(b) time and O(nb) processors. The inner-
product network is illustrated in Fig. 14.14, where the small triangles represent
multiplication trees and the large triangle an addition tree.

The product of twon X n matricesconsistsaf n? inner vector products (each row
of thefirst matrix ismultiplied by each column o the second). Supposethat we havea
multiplier for vectors that multiplies two vectors in g time units using p processors.
Then n? copies of thismultiplier can be used to multiply twon x n matricesin g time
units using n?p processors. In general, n® copies, where 0 < « < 2, will do thejobin
n?~%g time units and use n®p processors.

Our vector multiplier of Fig. 14.14 has

q = O(log n) + O(b),
p = O(nb).
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Figure 14.14 Inner-product network.

Thus »n* copies of this multiplier will compute the matrix product in time
t(n, b)= O(n* *log n + b))

using p(n, b) = O(n' **b) processors.

14.7 SELECTION

Given arandomly ordered sequence A={a,, a,, ..., a) o n b-bitintegers and an
integer k, where 1 < k < n,itisrequired to determine the kth smallest element of A.In
chapter 2 wecalled thisthe selection problem and presented a parallel agorithm for its
solution that runs on the EREW SM SIMD model, namely, procedure PARALLEL
SELECT. Assuming that each integer fitsin awor d of fixed size b, the procedure uses
nt—x processors, where 0 < x < 1,7and runsin O(n*)time, when counting operations
on words. When bit operations are counted, the procedure requires O(bn*)timefor a
cost of O(bn). Thiscost is optimal in view of the Q(bn) operations required to simply
read the input.

We now describe an algorithm for the selection problem with the following
properties:

1 The algorithm operates on b-bit integers where b is a variable, and the bits of
each word arrive one every time unit.

2 Itrunson atree-connected parallel computer, which issignificantly weaker than
the SM SIMD model.

3. It matches the performance of procedure PARALLEL SELECT while being
conceptually much simpler.

We begin by describinga simple version of the algorithm whose cost is not optimal. 1t
is based on thefollowing observation. If aset M consisting of the m largest members of
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A can be found, then either

(i) the kth smallest is included in M, in which case we discard from further
consideration those elements of A that are not in M, thus reducing the length of
the sequence by n — m or

(ii) thekthsmalestisnotin M, inwhich casethe melementsaf M are removed from
A.

In order to determine M, welook at the most significant bit of theelementsd A. If the
binary representation of element ¢; of A, wherel <i g n is

a;(b—1) a;(b—-2)...4a/0),
then q; isin M if a;,(b — 1) = 1; otherwise g; isnot in M [i.e., when q,(b — 1) = 0]. If
this processis repeated, by considering successive bits and regjecting a portion of the
original sequence each time, the kth smallest will be left. (Of course more than one
integer may be left if al the elementsof A are not distinct.)

For ease df presentation, we assume that n, the Sze of the input sequence, isa
power of 2. Thealgorithm runs on a tree-connected network of simple processorswith
nleaves Py, P,, ..., P. Ledf processor P; can
(i) receivethe bits o a; seridly, most significant bit first, from someinput medium;
send the bits of a; to its parent seridly;
send its own index i to its parent, if requested; and
switch itsdlf " of f* if told to do so.

g
=

Initially, al leaf processorsare™on.” Once a leaf has been switched off, it isexcluded
from the remainder o the algorithm's execution: It stops reading input and no longer
sends or receives messages to and from its parent.

Each o the n — 2 intermediate processorscan

(i) relay messages o fixed size from its two children to its parent and vice versa;
(i) behave as an SA-box; and
(iii) compare two O(log n)-bit values.

Finally, the root processor can

(i) send and receive messages of fixed size to and from its two children;
(i) compare two Of(log n)-hit values;

(iii) behave as an SA-box; and

(iv) store and update three O(log n)-bit values.

The agorithm is given in what follows as procedure TREE SELECTION.
When the procedure terminates, the index of the kth smallest element o A is
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contained in the root. If several elements of A qualify for being the kth smallest, the
one with the smallest index is selected.

procedure TREE SELECTION (A, k)

Step 1= {Initialization)
(1.1) The root processor reads n and k
(1.2) 1« n {listhe length of the sequence remaining)
(1.3) g~ k{the gth smallest element is to be selected)
(1.4) finished « false.

Step 2 while not finished do
(21)for i=1ton doin paralld
P; reads the next hit of g,
end for
(22) The sum s of the n bits just read is computed by the intermediate and root
processors acting as an addition tree
23)ifl—q—-5s=20
then {gth not in M}
)lel—s
(i) the intermediate processors relay to all leaves the root's message:
if latest bit read was 1
then switch “off”
end if
elseifl —g—s=—1lands=1
then {qth element found)
(i) the intermediate processors relay to al leaves the root's message:
if latest bit read was 1
then send index to root
end if
(ii) the intermediate processors relay to the root the index of the lesf
containing the gth smallest element
(iii) finished « true
else {gth in M)
() g—gq—(-5)
(i) les
(iii) the intermediate processors relay to all leaves the root's message:
if latest bit read was 0
then switch " of f

end if
end if
end if
24 if1=1
then (i) the intermediate processors relay to al leaves the root's message:
if still "on"

then send index to root
end if
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(i) the intermediate processors relay to the root the index of
the only remaining integer
(iii) finished « true
end if
(2.5) if (there are no more input bits) and (not finished)
then (i) the intermediate processors relay to all leaves the root's message:
if still "on™
then send index to root
end if
(ii) the intermediate processors relay to the root the index of the
smallest-numbered leef that is still "on™
(i) finishedtrue
end if
end while. (O

Note that none d the processors(root, intermediate, or leaf) is required at any
stage of the algorithm'sexecution to store al b bitsdf an input integer. Therefore, the
network's storage requirements are independent of b

Example 14.1

Assume that we want to find the fourth smallest vaue in {10, 15, 12, 1,3, 7, 6, 13).
Initially,! = 8 and g = 4. During the first iteration of step 2, the most significant bit of
each input integer is read by one leaf, as shown in Fig. 14.15(a). The sum of these bits,
s = 4, iscomputed at theroot. Sincel — g — s = 0, lesf processorsP,, P,, P,, and Ps are
switched off, and | = 4.

During the second iteration, the second most significant bits are read by the
processorsthat arestill on. Thisisshownin Fig. 14.15(b), where the processorsthat were
switched dff are marked withan x . Sinces =2,1 — q— s = — 2,and processors P, and
P are switched off. Now [ =2and q= 2.

In'thethird iteration, the sum of the third most significant bits, read by P, and P,,
iss=2.Sincel — q—s= —2and both input bits were 1, no processor is switched ofl.
Agan,I=2and q=2

In thefourth (and last) iteration, s = 1and ! — g — s = —1: Theindex of processor
P is sent to the root, signifying that the fourth smallest value in the input sequence is
7. O

Analysis. Step 1takesconstant time. Thereareat most biterations of step 2.
Duringeachiteration thesum s of n bitsread by theleavescan be obtained by theroot
in O(log n) time by letting then — 2 intermediate nodesand root simulatean addition
treewith n one-bit numbersasinput. Unlikethe root of the addition tree, however, the
root processor here retains the logn bits o the sum. Thus the time required is
O(blogn). Sincethe number of processorsis2n — 1, thealgorithm's cost isO(bn logn),
which is not optimal.

An algorithm with optimal cost can be obtained asfollows. Let N be a power of
2suchthat Nlogn < n, and assumethat 2N — 1 processorsare availableto sdlect the
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kth smallest element. These processorsare arranged in a tree with N leaves. The ledf
processors are required to be more powerful than the ones used by procedure TREE
SELECTION: They should be able to compute the sum o n/N bits. Each lesf
processor is''in charge” of n/N elementsd the sequenceA. Thesen/N integersarrive
on n/N input media that the leaf examines sequentially. The parallel algorithm
consistsdf biterations. Forj=b — 1, b— 2,...,0, iteration j consistsd three stages.

(i) Every leaf processor finds the sum of thejth bits of (at most) n/N integers.
(il) Thesesumsareadded by the remaining processors,and the root indicateswhich
elements must be discarded.
(iii) Every leaf processor "marks" the discarded inputs.

Stages (i) and (iii) require O(n/N) operations. There are O(log n) operations
involvedin stage (ii) to go up and down the tree. The time per iterationisO(n/N), for a
total running time of

t(n) = O(bn/N).
Since p(n) = 2N — 1, we have
c(n) = O(bn),

and thisis optimal.

14.8 SORTING

Given a sequence of n b-bit integersA ={a,, a, ..., a,), itisrequired to sort A in
nondecreasing order. We assumethat b isa variable and that the bits of each integer
arrive one every time unit. The sequence can be sorted by adapting the odd-even
sorting network o Fig. 4.1. The adapted network has two features:

1 Each integer g; isfed into the network mod significant bit first.

2 Bit comparators replace the word comparatorsin Fig. 4.1. A bit comparator
has the samefunction as a word comparator: It compares two integers, producing the
smaller on the top output line and the larger on the bottom output line. The only
difference is that bit comparators perform their task bit serialy. A bit comparator
receivestwo bitsas input and produces two bits as output in the following way. As
long as the two input bits are equal, they are produced on the two output lines
unchanged. As soon as the two input bits differ,

(i) the0 bit, and all subsequent bits of that integer, are produced as output on the
top output line of the comparator and

(ii) the 1 bit, and all subsequent bits of that integer, are produced as output on the
bottom output line o the comparator.
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As the odd—even network consists of O(log?n) stages, the modified network requires

t(n, b) = O(log®n) T O(b)

time and

p(n, b) = O(n log®n)

processors.
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14.3
14.4

14.9 PROBLEMS

Let x and y be two b-bit integers, where b isa variable. Design a network for computing
X =y

Afull adder for bitsis a device that takes three bits as input and returns their sum as a
two-bit binary number. A collection of full adders (arranged side by side) can take three
b-bit integers x, y, and z asinput and return two binary integersu and v as output such
that x Ty + z=u* v. Assumethat b isaconstant and al bitsof x,y, and z areavailable
at once. Each full adder receives one bit from each of x, y, and z and returns one bit of
each o wand v. Thusu and vcan be obtained from X, y, and z in constant time. Let uscall
this device a (3,2)-adder. Show that a network of (3, 2)-adders reduces the problem of
adding n numbers to the problem o adding two numbers. Analyze the running time,
number of processors, and complexity of this network.

Discuss the cost optimality of the networks described in section 14.4.

Let x and y be two b-bit integers, whereb isa power o 2 A divide-and-conquer algorithm
can be used to multiply x and y. Wefirst split each of x and y into two equal partsaof b/2
bits each and write

x=ux 2% 4y,
y=wx2% 4z
Now x x y is computed from
@w)2b + (uz + vw)2%? 4 vz,

wherethe products uw, uz, vw, and vz are obtained by the same algorithm recursively. L et
g(b) be the number of bit operations required to compute x x y by the preceding
algorithm. Since the agorithm involves four multiplications of two (b/2)-bit integers,
three additions of integers with at most 25 bits, and two shifts(multiplicationsby 2% and
2°/2), we have

gy =1,
q(b) = 4q(b/2) + cb,

for some constant c. It follows that g(b) = O(b?).

(8 Can thealgorithm beimplementedin parallel?Canit be used in asetting whereb isa
variable and the bits of x and y arrive serially?

(b) Consider now the following modification to the algorithm. The quantity uz + vw is
obtained from (Ut v}w + z) — uv — vz. Only three multiplications of (b/2)-bit
integers are now required, four additions, two subtractions, and two shifts.
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Consequently,
q=1,
q(b) = 34(b/2) + cb,

for some constant c. It followsthat g(b) = O(b'#2*) = O(b*-3%). Repeat part (a) for this
new version.

Let x and y be b-bitintegers. Design a network to compute the quotient and remainder of
x divided by y.

Which of the two networks described in section 14.5 for computing the prefix sums of a
sequence relies on the commutativity of the addition operation, that is,a* b= b+ a?

The networks of section 14.5 have a cost of O(nlog?s + bnlog ). This cost is clearly not
optimal since a single SA-box can compute all prefix sums in O(bn) time. Can a cost-
optimal solution be obtained for the bit-serial version of the prefix sums problem?

The networks of section 14.5 produce, as one of their outputs, the sum o their ninputs.
Compare this method of computing the sum of nintegersto the one described in section
14.3.

Repeat problem 134 for the bit-serial case.

Repesat problem 13.5 for the bit-serial case.

Repeat problem 136 for the bit-serial case.

Discussthe cost of the matrix multiplier of section 14.6.
Describeformally the algorithm given at the end of section 14.7.

Adapt procedure TREE SELECTION to run on an n'? x n'/? mesh-connected
computer and analyze its running time.

Can the cost of the algorithm derived in 14.14 be made optimal ?

Consider a linear array of processors P,, P,, ..., P, and the following algorithm for
sorting a sequence of n b-bit integers that arrive one at a time at P,. At every step, the
contentsof the entire array of processorsare shifted to the right making roomin P, for a
new input item. Thisisfollowed by a comparison—exchange: For al odd i, theitemsin P;
and P;,, are compared, with the smaller going to P; and the larger to P;;. After n
repetitions of thesetwo steps, input iscomplete and output can start. Thecontentsof the
array are shifted left producing as output from P, the current smallest element in the
array. Thisisfollowed by a comparison—exchange. After n repetitions of the preceding
two steps output is complete. When several sequencesare queued for sorting, thissorter
has period 2n. The period can be reduced to nby allowingboth P, and P, to handleinput
and output. While P, is producing output, P, can receiveinput and conversely. Sorted
sequences are produced alternately in ascending order (through P,) and in descending
order (through P,). Thus msequencesof nintegerseach aresorted in (m + 1)n instead of
2mn steps. Obviously the time to compare two b-bit integersx and y, when bisnot fixed,
isalinear function of b. Thus, the precedingtimesarein reality (m T L)nb and 2mnb. It is
of course possibleto compare two b-bit integersin fewer than b steps by usingadditional
circuitry in each processor. This circuitry isin the form of a complete binary tree with b
leaves. Assume that bit-parallel input is allowed, that is, al b bits of an integer arrive
simultaneously. Each lesf compares one bit of x with the corresponding bit of yand sends
the result upward. These results propagate up the tree, and in log b steps the larger of x
and y is determined. This would make the running time (m + 1)nlog b and 2mlog b.
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Show that a network derived from the linear array whose processors use no special
circuitry and operate at the bit level can sort in (1 + m/2)n + b time. This would represent
a significant improvement over the preceding approach.

Consider the following algorithm for sorting the sequence A ={a,, a,, ..., a,} of b-bit
integers. Two arrays of n entrieseach are created in memory. Thesetwo arraysarecalled
bucket ¢ and bucket I. The algorithm consists of biterations. At the beginning of each
iteration, all positions of both buckets contain zeros. Duringiteration j, each element a;
of A, where
a; = a;(b — 1) aib — 2)...4,(0),

is examined: A 1 is placed in position i of either bucket 0 or bucket 1 depending on
whether g;(j)}is0 or 1, respectively. The valuesin bucket 0, followed by those in bucket 1,
form a sequence of 0’s and I's of length 2n. The prefix sums {s,,s,,...,s;,} Of this
sequence are now computed. Finally element g; is placed in position s; or s;,, of 4
(depending on whether bucket 0 or bucket 1 containsa 1 in position i), concluding this
iteration. Show how this algorithm can be implemented in paralel and analyze its
running time and cost.
The networks in sections 14.2-14.6 receive their inputs and produce their outputs least
significant bit first. By contrast, the networksin sections 14.7 and 14.8 receive their inputs
and produce their output's most significant bit first. This may be a problem if the output
of onenetwork (of thefirst type) isto serve astheinput to another network (of the second
type), or vice versa. Suggest ways to overcome this difficulty.
Let us define
(i) clock cycle as the time elapsed from the moment oneinput bit arrivesat a network to

the moment the following bit arrives and
(ii) gate delay as the time taken by a gate to produce its output.
Show that, for the networksin this chapter to operate properly, it isimportant that

clock cycle > gate delay.
Argue that the running time analysesin this chapter are correct provided that the ratio

of clock cycle to gate delay is constant.

Show that the process of computing the magjority of fundamental statistical quantities,
such as the mean, standard deviation, and moment, can be speeded up using the networks
described in this chapter.

Design a network for computing the greatest common divisor of two b-bit integers.

14.10 BIBLIOGRAPHICAL REMARKS

Asmentioned in theintroduction, most modelsof computation assume that the word size of the
input data is fixed and that each data word is available in its entirety when needed; see, for
example,[Aho], [Akl 1],[Horowitz], and[Knuth 1].In thissection, we briefly review some of
the algorithmsthat were designed to solve the problems addressed in sections 14.2-14.8 based
on these two assumptions. When comparing those algorithms to the networks of this chapter,
one should keep in mind that the latter do not make the preceding two assumptions and can
therefore be used (if needed) in situations where these assumptions apply (aswell asin situations
where they do not).
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The fastest known algorithm for adding two b-bit integersis the carry-look-ahead adder
[Kuck]. It runsin O(logb) time and uses O(blog b) gates with arbitrarily large fan-out. The
algorithm's cost is therefore O(blog?b). Thisisto be contrasted with the O(b) cost of the SA-box
([Baer]).

The sum of n b-bit integers can be computed by a tree of carry-look-ahead adders
[Ullman]. This requires O((logn)log b)) time and O(nblogh) gates for a cost o
O((nlog n)b l0g?b)). By comparison, the tree of SA-boxes described in section 14.3 uses fewer
gates, has a lower cost, and is faster for b = O(log n). Another algorithm superior to the tree of
carry-look-ahead adders is described in problem 14.2.

Two solutions are given in [Kuck] to the problem of multiplying two b-bit integers. The
first one uses carry-look-ahead adders and requires O(log?b) time and O(b?10gb) gates. The
second and more elaborate solution is based on a combination of carry-save and carry-look-
ahead adders. It uses O(b?) gates and runs in O(log?b) time (when the fan-out of the gates is
constant) and O(log b) time (when the fan-out is equal to b) for costs of O(b*10g*b) and
O(*10g b), respectively. Both of these costs are larger than the O(b?) cost of the multiplication
tree and multiplication mesh of section 14.4.

If carry-look-ahead adders are used in section 13.2.3 for computing the prefix sums of a
sequence of nintegers, then the tree algorithm described therein would require O((log n)log b))
time and O(nblogb) gates for a cost of O((nlogn)b log?b)). Assume for concreteness that
b = O(log n). Then the preceding expressionsdescribing the running time, number of gates, and
cost become O((log nXlog log n)), O((n 1og nXlog log n)), and O((n log?nXlog?log n)), respectively.
The corresponding expressions for the networks of section 14.5 are O(log n), O(nlog n), and
O(nlog?n).

Procedure CUBE MATRIX MULTIPLICATION o section 7.32 uses n® processors
and runsin O(log n) time. If the processors are based on theinteger multiplier given in [Kuck]
and whose gate and time requirements are O(b?)and O(log?b), respectively, then the product of
two n x nmatricesdf b-bitintegerscan be obtained in O((log n)(log?b))time using O(n3b?) gates.
Thisyieldsa cost of O((n*10g n)(b?10g?)).Again, let b= O(log n). The cost of procedure CUBE
MATRIX MULTIPLICATION in this case is O(n®*10g®n log?10gn). This is larger than the
O(n®10gn) cost of the network described in section 14.6. Note also that the product of the
solution time by the number of gates used for any sequential matrix multiplication algorithm of
the type described, for example, in [Coppersmith] and [Gonnet], can be improved from
O(b?10g°b) where x < 3 (using the integer multiplier in [Kuck]) to O(n*b?) (using the
multiplication tree or mesh of section 14.4).

Many tree algorithms exist for selecting the kth smallest element of a sequenceadf n b-bit
integers (assuming that all bits are available simultaneously). Some of these are reviewed in
[Aggarwal 1]. The best such algorithm uses O(n) processorsand runsin O(log?n)time. Counting
bit operations, this running time becomes O(blog?n). Unlike (the modified) procedure TREE
SELECTION described in section 14.7, this algorithm is not cost optimal.

A cost-optimal algorithm for sorting n b-bit integersis described in [Leighton]. It uses
O(n) processors and runs in O(blog n) time (counting bit operations), for an optimal cost o
O(bnlogn). Using the bit comparators described in section 14.8 and in [Knuth 2], sorting can
be performed in O(b + log n) time with O(n) gates.

The networks in this chapter are mostly from [Akl 2], [Cooper], and [Meijer]. Other
agorithms concerned with bit operations are described in [Aggarwa 21, [Akl 3], [Batcher],
[Bini], [Brent], [Kannan], [Luk], [Reeves], [Siegel], and[Yu] for avariety of computational
problems.
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303

MESH PDE, 214

MESH FFT, 239

MESH PREFIX SUMS, 349

MESH SEARCH, 129

MESH TRANSPOSE, 172

MIMD ALPHA BETA, 324

MI1M D computer, 3,17, 19, 107,194,203,209,
222, 223, 319, 336, 355

MIMD MODIFIED GS, 204

MIMD ROOT SEARCH, 211

Minimax principle, 314

MINIMUM, 151

Minimum spanning tree, 261, 304

MI1SD computer, 3,4

Mixed radix integer, 145

Model of computation, 3

Model Problem, 212

Modular architecture, 28

Moment, 384

Most significant bit, 377, 381, 384

Multicomputer, 17

MULTIPLE BROADCAST, 70

Multiple broadcasting, 10

MULTIPLE STORE, 82

Multiple storing, 10

Multiplication mesh, 369

Multiplication tree, 368

Multiplying two integers, 366

Multiprocessor, 17

Multistage network, 164



NC, 272

Nearest neighbor, 53
Network, 362

Network flow problem, 270
Newton's method, 209

NEXT COMBINATION, 147
NEXT PERMUTATION, 144
Node of a graph, 251
NP-complete problems, 272
NP-hard, 357

Number of processors, 25
Numbering combinations, 148
Numbering permutations, 145
Numerical analysis, 200
Numerical errors, 200
Numerical integration, 225
Numerically unstable, 221

Oblivious of input, 64, 87
Odd-even merging network, 61
Odd-even sorting network, 87, 381
ODD-EVEN TRANSPOSITION, 90
Office automation, 135

Offspring, 313

Omega network, 194

Optimal, 23

Optimization problem, 337

Or, 29, 122, 254, 363

ORDER, 149

Order statistics, 54

ORDERINV, 150

Orthogonal matrix, 222

Overflow, 125

P-complete problems, 272

Parallel agorithm, 3

PARALLEL COMBINATIONS, 159
Parallel computer, 2

PARALLEL PERMUTATIONS, 152
Parallel pipelined computer, 136
PARALLEL SCAN, 152
PARALLEL SELECT, 49
PARALLEL SUMS, 342

Parallelism, 2

Partial differential equation, 212
Partition, 165

Path in a graph, 253

Pattern recognition, 280

Perfect shuffle, 14, 28, 53, 106, 175, 193, 194,

374
Perfect unshuffle, 53, 343, 344, 374
Perfectly ordered game tree, 318
Period, 28, 128
Permutation, 141
Permutation network, 164, 166
Picture element, 20
Pipelining, 17, 122, 282, 362
Pivoting, 221
Pixel, 20, 305
Planar subdivision, 279
Plane rotation, 218
Plus-minus 2/, 31
Ply, 313
POINT IN POLYGON, 281
POINT IN SUBDIVISION, 284
Poisson's equation, 212
Poker, 312
Polygon, 278, 279
Polynomial multiplication, 232
Polynomial time algorithm, 272
Position, 124
Positive definite matrix, 221
PRAM model, 7
Predecessor, 135
Prefix sums, 47, 341, 362, 373
Primality testing, 5
Primitive root of unity, 194, 231
Probalistic algorithm, 55
Problem reduction, 289
Process, 19
Processor, 2, 19
PROPAGATE, 235
Proximity problems, 278
Pyramid, 80, 106, 304, 305

QR-factorization, 222
Quadratic convergence, 210
Querying, 121, 128

Queue, 20, 122
QUICKSORT, 85

Radius, 269
Rank, 40, 125
RANKC, 149
RANKCINV, 150
RANKP, 146
RANKPINV, 146



Recursive doubling, 342

Regula falsi, 223 .

Regular architecture, 28
Resolution, 20

Routing step, 22, 240

Row-major order, 78, 183, 219,238
Running time, 21

SA-box, 364

SCORE, 325

Score table, 324

Searching, 112

Selection, 39, 40, 99, 376

Semaphore, 205, 323

Sequential algorithm, 4

SEQUENTIAL COMBINATIONS, 147
SEQUENTIAL CONVEX HULL, 291
SEQUENTIAL FFT, 232
SEQUENTIAL MERGE, 65
SEQUENTIAL PERMUTATIONS, 143
SEQUENTIAL SEARCH, 112
SEQUENTIAL SELECT, 41
SEQUENTIAL SUMS, 342

Serial adder, 363

Serial algorithm, 4

Shared memory, 6, 7, 17, 54, 119, 164,221, 342
Shortest path, 257

SHUFFLE TRANSPOSE, 176
Shuffle-exchange, 14, 245

Shuffled row-major order, 105

SIMD computer, 3, 5, 355

SIMD DFT, 237

SIMD GAUSS JORDAN, 201

SIMD ROOT SEARCH, 209
Single-source shortest paths, 269, 304
Single-stage network, 164

SISD computer, 3

SM SEARCH, 120

Snakelike row-major order, 105
Sorting, 23, 24, 26, 85, 381

Sorting by bucketing, 107

Sorting by enumeration, 94

Sorting network, 87, 163

Sparse graph, 268

Special-purpose architecture, 20, 54, 342
Speedup, 24

Standard deviation, 384

Staran flip, 195

State-space graph, 310
State-space traversal, 310

Step, 22

Storage and retrieval, 135
STORE, 54

Storing, 10

Strong component of a graph, 269
Subgraph, 253

Subset sum problem, 311, 337
Successive over-relaxation, 212
Successor, 135

SUM, 236

Sum, 4, 15, 24, 25, 46
Supercomputer, 1

Supervertex, 267

SW-banyan, 195

Symmetric difference of two graphs, 270
Symmetric matrix, 221
Synchronous operation, 6

Systolic array, 272

Terminal node, 313

Tic-tac-toe, 313

Tightly coupled machines, 17

Topological sorting, 269

TRANSPOSE, 171

Trapezoidal rule, 225

Traveling salesman problem, 271, 337

Tree, 14, 16, 25, 26, 28, 53, 80, 106, 121, 135,
190, 194, 268, 281, 337, 346, 351, 353, 355,
356, 364, 368, 375, 377, 383

TREE KNAPSACK, 353

TREE MV MULTIPLICATION, 190

TREE SELECTION, 378

TREE SEQUENCING, 352

Triconnected components of a graph, 271

Two-dimensional array, 13

TWO-SEQUENCE MEDIAN, 75

Undirected graph, 252
Unfolding, 128
UPDATE, 326
Update, 126

Upper bound, 22, 23
UPPER HULL, 298

Vector, 188
Vertex of a graph, 251
VLS, 27



Weak component of a graph, 269
Weighted graph, 252

Wire delay, 127, 304, 349, 365
Wire length, 28, 128

Word, 361

Wor st-case analysis, 55

Wraparound connections, 193, 246
Writeconflict, 7, 93, 187

Xor, 29, 363

Zero matrix, 202
Zero of a function, 206





